From 1 - 10 / 64
  • In this Record new U-Pb SHRIMP zircon results are presented from nine samples from western South Australia and eastern Western Australia. This geochronological study was undertaken to provide temporal constraints on the crystalline basement geology beneath the Nullarbor Plain, to assist in geological interpretation of a reflection seismic transect (13GA-EG1) between the Albany-Fraser Province in the west and the central Gawler Craton in the east. This seismic line transects a region in which the crystalline basement geology is entirely buried beneath Neoproterozoic to Cenozoic sedimentary rocks. Consequently, the age, tectonic evolution and mineral potential of the crystalline basement in this region is very poorly understood. The new results complement the very limited pre-existing geochronology data from the Coompana Province and Madura Province, and provide a basis for comparison of geological ages in these provinces with the geological histories reconstructed for the adjacent provinces of the Gawler Craton to the east and the Albany-Fraser Province to the west.

  • This report presents new Sensitive High Resolution Ion Micro Probe (SHRIMP) U-Pb geochronological results obtained during the Geological Survey of Queensland-Geoscience Australia (GSQ-GA) Geochronology project between July 2010 and June 2012. A total of 24 samples were analysed, in support of ongoing regional geoscientific investigations and mapping programs by the GSQ. This report documents detailed results for each sample individually, encompassing sample location and geological context, a description of the target mineral for geochronology, the relevant analytical data, and a brief geochronological interpretation. A summary of all results from this study is presented in Table i, and the sample locations are shown in Figure i. The analysed samples are from regions extending from the Eulo Ridge, an exposed part of the mainly concealed Thomson Orogen in south-western Queensland, to the Charters Towers and Greenvale regions in the north and the Mount Isa region in the north-west (Figure i). The work was carried out to provide an improved time framework for updated interpretations of the geology of selected parts of the state.

  • This Record presents data collected as part of the ongoing NTGS-GA geochronology project between July 2014 and June 2015 under the National Collaborative Framework (NCF). In total, five new U-Pb SHRIMP zircon and titanite geochronological results derived from four samples from the Arunta Region in the Northern Territory are presented herein (Table 1; Figure 1). Three samples were collected from JERVOIS RANGE in HUCKITTA1 in the eastern Arunta Region, and comprise metasedimentary and metaigneous rocks. The fourth sample analysed is an igneous rock from drillcore in TOBERMOREY.

  • The fundamental geological framework of the concealed Paleoproterozoic East Tennant area of northern Australia is very poorly understood, despite its relatively thin veneer of Phanerozoic cover and its position along strike from significant Au–Cu–Bi mineralisation of the Tennant Creek mining district within the outcropping Warramunga Province. We present 18 new U–Pb dates, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), constraining the geological evolution of predominantly Paleoproterozoic metasedimentary and igneous rocks intersected by 10 stratigraphic holes drilled in the East Tennant area. The oldest rocks identified in the East Tennant area are two metasedimentary units with maximum depositional ages of ca. 1970 Ma and ca. 1895 Ma respectively, plus ca. 1870 Ma metagranitic gneiss. These units, which are unknown in the nearby Murphy Province and outcropping Warramunga Province, underlie widespread metasedimentary rocks of the Alroy Formation, which yield maximum depositional ages of 1873–1864 Ma. While parts of this unit appear to be correlative with the ca. 1860 Ma Warramunga Formation of the Warramunga Province, our data suggest that the bulk of the Alroy Formation in the East Tennant area is slightly older, reflecting widespread sedimentation at ca. 1870 Ma. Throughout the East Tennant area, the Alroy Formation was intruded by voluminous 1854–1845 Ma granites, contemporaneous with similar felsic magmatism in the outcropping Warramunga Province (Tennant Creek Supersuite) and Murphy Province (Nicholson Granite Complex). In contrast with the outcropping Warramunga Province, supracrustal rocks equivalent to the 1845–1810 Ma Ooradidgee Group are rare in the East Tennant area. Detrital zircon data from younger sedimentary successions corroborate seismic evidence that at least some of the thick sedimentary sequences intersected along the southern margin of the recently defined Brunette Downs rift corridor are possible age equivalents of the ca. 1670–1600 Ma Isa Superbasin. Our new results strengthen ca. 1870–1860 Ma stratigraphic and ca. 1850 Ma tectono-magmatic affinities between the East Tennant area, the Murphy Province, and the mineralised Warramunga Province around Tennant Creek, with important implications for mineral prospectivity of the East Tennant area. Appeared in Precambrian Research Volume 383, December 2022.

  • The Paleo- to Mesoproterozoic McArthur Basin and Mount Isa region of northern Australia (Figure 1) is richly-endowed with a range of deposit types (e.g., Ahmad et al., 2013; Geological Survey of Queensland, 2011). These include the basin-hosted base metal (Zn-Pb-Ag) deposits of the North Australian Zinc Belt, the richest zinc province in the world (Geological Survey of Queensland, 2011; Huston et al., 2006), as well as Cu (e.g., Mt Isa Copper) and IOCG (e.g., Ernest Henry) deposits (Geological Survey of Queensland, 2011). The giant size of the base metal deposits makes them attractive exploration targets and significant effort has been undertaken in understanding their genesis and setting and developing methodologies and data sets to aid in further discovery. As part of its Exploring for the Future program, Geoscience Australia is acquiring new, and reprocessing old, data sets to provide industry with new exploration tools for these basin-hosted Zn-Pb and Cu deposits, as well as iron-oxide copper-gold deposits. We have adopted a mineral systems approach (e.g., Huston et al., 2016) focussing on regional aspects such as source rocks, locations of mineral deposits, mineralisation haloes and footprints. Increased understanding of these aspects requires knowledge of the background variability of unaltered rocks within the basin. To assist in this we have undertaken a campaign of baseline geochemical studies, with over 800 new samples collected from sedimentary and igneous units of selected parts of the greater McArthur Basin–Mount Isa region. This has allowed us to document temporal and regional background geochemical (and mineralogical) variation within, and between sedimentary and igneous units. The main focus of this work was directed towards aspects of base metal mineralisation; a concurrent GA study (e.g., Jarrett et al., 2019) looking at aspects of hydrocarbon potential was undertaken in parallel. Appeared in Annual Geoscience Exploration Seminar (AGES) Proceedings, Alice Springs, Northern Territory 24-25 March 2020, p. 105

  • This Record presents data collected in April 2019 as part of the ongoing Northern Territory Geological Survey–Geoscience Australia (NTGS–GA) SHRIMP geochronology project under the National Collaborative Framework (NCF) agreement and Geoscience Australia's Exploring for the Future Program. Two new U–Pb SHRIMP zircon geochronological results derived from two samples of meta-igneous and metasedimentary rocks from the Aileron and Irindina provinces in JINKA and DNEIPER (HUCKITTA) in the Northern Territory are presented herein. <b>Bibliographic Reference:</b> Kositcin N, and Reno BL, 2020. Summary of results. Joint NTGS–GA geochronology project: Aileron and Irindina provinces, Jinka and Dneiper 1:100 000 mapsheets, 2019. <i>Northern Territory Geological Survey</i>, <b>Record 2020-001</b>.

  • This Record presents new Sensitive High Resolution Ion MicroProbe (SHRIMP) U–Pb zircon results obtained under the auspices of the Geological Survey of Queensland–Geoscience Australia (GSQ–GA) National Collaboration Framework (NCF) geochronology project between July 2016 and June 2017. This Record presents results from six newly analysed samples, in support of ongoing regional mapping and geoscientific programs led by GSQ in the Georgetown, Coen and Cairns regions. Three magmatic samples were analysed from unnamed rhyolite dykes within the Georgetown region (Gilberton 1:250 000 sheet SE5416), two samples (one magmatic and one metasedimentary) from the Coen region(Coen SD5408), and one metasedimentary sample from the Cairns region (Innisfail SE5506). A summary of each sample is presented, each containing information on sample location and geological content, geochronology results, as well as a brief geochronological interpretation. <b>Bibliographic Reference:</b> Christopher J. Lewis, Courteney R. Dhnaram, Dominic D. Brown, Robert J. Bultitude, Vladimir A. Lisitsin. Summary of Results. Joint GSQ–GA Geochronology Project: Georgetown, Coen and Cairns regions, 2016–2017. <i>Queensland Geological Record</i><b> 2021/05</b>.

  • This Record documents the efforts of the Geological Survey of Victoria (GSV) and Geoscience Australia (GA) in compiling a geochronology (age) compilation for Victoria, describing both the dataset itself and the process by which it is incorporated into the continental-scale Isotopic Atlas of Australia. The Isotopic Atlas draws together age and isotopic data from across the country and provides visualisations and tools to enable non-experts to extract maximum value from these datasets. Data is added to the Isotopic Atlas in a staged approach with priorities determined by GA- and partner-driven focus regions and research questions. This dataset, which was primarily compiled by GSV and has been supplemented with data compiled by GA during the 2013–2017 Stavely Project, is a foundation for the second phase of the Exploring for the Future initiative over 2020–2024, particularly the Darling-Curnamona-Delamerian Project.

  • Australia has been, and continues to be, a leader in isotope geochronology and geochemistry. While new isotopic data is being produced with ever increasing pace and diversity, there is also a rich legacy of existing high-quality age and isotopic data, most of which have been dispersed across a multitude of journal papers, reports and theses. Where compilations of isotopic data exist, they tend to have been undertaken at variable geographic scale, with variable purpose, format, styles, levels of detail and completeness. Consequently, it has been difficult to visualise or interrogate the collective value of age and isotopic data at continental-scale. Age and isotopic patterns at continental scale can provide intriguing insights into the temporal and chemical evolution of the continent (Fraser et al, 2020). As national custodian of geoscience data, Geoscience Australia has addressed this challenge by developing an Isotopic Atlas of Australia, which currently (as of November 2020) consists of national-scale coverages of four widely-used age and isotopic data-types: 4008 U-Pb mineral ages from magmatic, metamorphic and sedimentary rocks 2651 Sm-Nd whole-rock analyses, primarily of granites and felsic volcanics 5696 Lu-Hf (136 samples) and 553 O-isotope (24 samples) analyses of zircon 1522 Pb-Pb analyses of ores and ore-related minerals These isotopic coverages are now freely available as web-services for use and download from the GA Portal. While there is more legacy data to be added, and a never-ending stream of new data constantly emerging, the provision of these national coverages with consistent classification and attribution provides a range of benefits: vastly reduces duplication of effort in compiling bespoke datasets for specific regions or use-cases data density is sufficient to reveal meaningful temporal and spatial patterns a guide to the existence and source of data in areas of interest, and of major data gaps to be addressed in future work facilitates production of thematic maps from subsets of data. For example, a magmatic age map, or K-Ar mica cooling age map sample metadata such as lithology and stratigraphic unit is associated with each isotopic result, allowing for further filtering, subsetting and interpretation. The Isotopic Atlas of Australia will continue to develop via the addition of both new and legacy data to existing coverages, and by the addition of new data coverages from a wider range of isotopic systems and a wider range of geological sample media (e.g. soil, regolith and groundwater).

  • <p>The Isotopic Atlas of Australia is one of the fundamental datasets in Geoscience Australia (GA)’s Exploring for the Future program. It is underpinned by a nationwide coverage of high-quality U-Th-Pb radiometric dates, mostly determined by Sensitive High Resolution Ion Micro Probe (SHRIMP). For the past decade, GA and the international SHRIMP community have relied on SQUID 2.50 software to process isotopic data acquired by SHRIMP for U-Th-Pb geochronology. However, SQUID 2.50 is obsolete because of dependency on Excel 2003, which is unsupported by Microsoft and will not operate on Windows 10. As a result, GA collaborated with the Cyber Infrastructure Research and Development Laboratory for Earth Sciences (CIRDLES.org) at the College of Charleston (USA) to redeploy SQUID 2.50 algorithms in an open-source, platform-independent and freely available Java application (Squid3). Squid3 replicates (rather than seeking to enhance) SQUID 2.50 logic and arithmetic, with substantial improvements in flexibility and interactivity. In this paper, we review documentation detailing widely trusted but little-known SQUID 2.50 algorithms and provide an overview of Squid3, focusing on the implementation and improvement of SQUID 2.50 functionality. The beta version of Squid3 is capable of end-to-end U-Th-Pb data processing, from ingestion of raw SHRIMP .xml files, through finalised summary calculations, to reporting of data arrays suitable for visualisation via packages such as Isoplot, Topsoil and IsoplotR. In production, Squid3 will enable users to sever links with Excel 2003, while ensuring the sustainability, reliability and relevance of SHRIMP data. <p><b>Citation:</b> Bodorkos, S., Bowring, J.F., and Rayner, N.M., 2020. Squid3: Next-generation data processing software for Sensitive High Resolution Ion Micro Probe (SHRIMP). In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.