From 1 - 10 / 89
  • Presentation delivered on 9 March 2012 by Marita Bradshaw.

  • A high resolution sequence stratigraphic study has been undertaken on the three wells in the Houtman Sub-basin, offshore North Perth Basin: Gun Island 1 (1968), Houtman 1 (1978) and Charon 1 (2008). The study focussed on the late Jurassic Yarragadee Formation, mid Jurassic Cadda Formation and early Jurassic Cattamarra Coal Measures. Log character (particularly gamma ray and sonic), cuttings, sidewall core and conventional core lithologies (including sedimentary structures) and palynological data were used to identify paleoenvironments. Stacking patterns of the interpreted environments were used to define systems tracts and then sequences. New palynological data have been collected by Geoscience Australia for Gun Island 1 and the palynology for all wells has been reviewed from Well Completion Reports and slides from intervals in each well. A number of transgressive systems tracts within the dominantly continental Yarragadee Formation and Cattamarra Coal Measures record small marine incursions into the Houtman Sub-basin. Within these units, the shallow marine intervals switch rapidly with non-marine intervals suggesting a more dynamic environment existed in the Houtman Sub-basin during the Jurassic than previously thought. These marine incursions are not evident in the Yarragadee Formation in Charon 1, indicating a lack of accommodation space or proximal sediment input into the north during the mid-late Jurassic. This has significant implications for reservoir and seal facies of potential Mesozoic petroleum systems in the Houtman Sub-basin.

  • No product available. Removed from website 25/01/2019

  • The Arafura Basin contains a sequence of Palaeozoic rocks lying north-east of Darwin, and which extends from onshore Australia, to perhaps as far as the Irian Jaya mainland. There are over 9 km of Palaeozoic rocks preserved along the southern bounding fault of a major graben (the Arafura Graben) located in the southern part of the basin. In the uplifted centre of the graben, there is less than 3 km of the Palaeozoic section preserved. The basin is underlain by a Middle to Late Proterozoic sequence which thickens to the east, and is probably equivalent to the onshore McArthur Basin. Overlying the Arafura Basin is the Mesozoic Money Shoal Basin, which is approximately 1 km thick over the central parts of the graben, thickening rapidly to the west and thinning to the east and north. The structural cross-section that has been drawn is located entirely offshore. It has been compiled using modern seismic and well control. It runs from south-east of Tasman 1 in a general north and north-east direction tying with Torres 1 and Arafura 1. It passes through the central and north-eastern parts of the graben, and the north-eastern part of the basin. Two-way time to depth conversions were based on the velocity surveys from the wells within the graben, but were modified locally outside the graben. The structural analysis presented is largely based on the evidence found along the line of the section. A more complete structural analysis would require a regional examination of the entire seismic network. Information from the recently published Petroleum Basin Study on the Arafura Basin (Northern Territory Geological Survey) has been incorporated into this report, although there are major differences between some of their findings and the interpretations presented here. To date the major risk in hydrocarbon exploration has been finding adequate reservoir conditions and seal. Contradictory interpretations are present between the maturation and structural modelling of the graben. Untested plays include possible Permian and Triassic sediments (up to 5 km thick) which exist along the flanks of the graben and which will probably contain good source potential and improved reservoir conditions. To the north outside the graben, there are poorly explored areas where it is speculated that there are thick Palaeozoic and Proterozoic sequences.

  • In 2011 as part of the National CO2 Infrastructure Plan (NCIP), Geoscience Australia started a three year project to provide new pre-competitive data and a more detailed assessment of the Vlaming Sub-basin prospectivity for the storage of CO2. Initial assessment by Causebrook 2006 of this basin identified Gage Sandstone and South Perth Shale (SPS) formations as the main reservoir/seal pair suitable for long-term storage of CO2. SPS is a thick (1900 m) deltaic succession with highly variable lithologies. It was estimated that the SPS is capable of holding a column of CO2 of up to 663m based on 6 MICP tests (Causebrook, 2006). The current study found that sealing capacity of the SPS varies considerably across the basin depending on what part of the SPS Supersequence is present at that location. Applying a sequence-stratigraphic approach, the distribution of mudstone facies within the SPS Supersequence, was mapped across the basin. This facies is the effective sub-regional seal of the SPS. Analysis of the spatial distribution and thickness of the effective seal is used for characterisation of the containment potential in the Vlaming Sub-basin CO2 storage assessment.

  • The Early Cretaceous Gage Sandstone and South Perth Shale formations are a prospective reservoir-seal pair in the Vlaming Sub-basin. Plays include post-breakup pinch-outs in the Gage Sandstone with the South Perth Shale forming top seal. The Gage reservoir has porosities of 18-25% and permeabilities of 1-1340 mD. It was deposited in palaeotopographic lows of the Valanginian breakup unconformity and is the lowstand component of the thick deltaic South Perth (SP) Supersequence. To characterise the reservoir-seal pair, a detailed sequence stratigraphic analysis was conducted by integrating 2D seismic interpretation, well log analysis and new biostratigraphic data. Palaeogeographic reconstructions for the SP Supersequence were derived from mapping higher-order prograding packages and establishing changes in sea level and sediment supply. Higher resolution Gage reservoir reconstructions were based on seismic facies mapping. The Gage reservoir forms part of a sand-rich submarine fan system similar to model proposed by Richards et al (1998). It ranges from canyon confined inner fan deposits to middle fan deposits on a basin plain. Directions of sediment supply are complex, with major sediment contributions from a northern and southern canyon adjacent to the Badaminna Fault Zone. The characteristics of the SP Supersequence differ markedly between the northern and southern parts of the sub-basin due to variations in palaeotopography and sediment supply. Palaeogeographic reconstructions reveal a series of regressions and transgressions leading to infilling of the palaeo-depression. Palaeogeographic reconstructions for the SP Supersequence portray a complex early post-rift depositional history in the central Vlaming Sub-basin. The developed approach is applicable for detailed studies of other sedimentary basins. APPEA

  • As part of the Australian Government's National CO2 Infrastructure Plan (NCIP), Geoscience Australia undertook a CO2 storage assessment of the Vlaming Sub-basin. The Vlaming Sub-basin a Mesozoic depocentre within the offshore southern Perth Basin located about 30 km west of Perth, Western Australia. The main depocentres formed during the Middle Jurassic to Early Cretaceous extension. The post-rift succession comprises up to 1500 m of a complex fluvio-deltaic, shelfal and submarine fan system. Close proximity of the Vlaming Sub-basin to industrial sources of CO2 emissions in the Perth area drives the search for storage solutions. The Early Cretaceous Gage Sandstone was previously identified as a suitable reservoir for the long term geological storage of CO2 with the South Perth Shale acting as a regional seal. The Gage reservoir has porosities of 23-30% and permeabilities of 200-1800 mD. The study provides a more detailed characterisation of the post Valanginian Break-up reservoir - seal pair by conducting a sequence stratigraphic and palaeogeographic assessment of the SP Supersequence. It is based on an integrated sequence stratigraphic analysis of 19 wells and 10, 000 line kilometres of 2D reflection seismic data, and the assessment of new and revised biostratigraphic data, digital well logs and lithological interpretations of cuttings and core samples. Palaeogeographies were reconstructed by mapping higher-order prograding packages and establishing changes in sea level and sediment supply to portray the development of the delta system. The SP Supersequence incorporates two major deltaic systems operating from the north and south of the sub-basin which were deposited in a restricted marine environment. Prograding clinoforms are clearly imaged on regional 2D seismic lines. The deltaic succession incorporates submarine fan, pro-delta, delta-front to shelfal, deltaic shallow marine and fluvio-deltaic sediments. These were identified using seismic stratigraphic techniques and confirmed with well ties where available. The break of toe slope was particularly important in delineating the transition between silty slope sediments and fine-grained pro-delta shales which provide the seal for the Gage submarine fan complex. As the primary reservoir target, the Gage lowstand fan was investigated further by conducting seismic faces mapping to characterise seismic reflection continuity and amplitude variations. The suitability of this method was confirmed by obtaining comparable results based on the analysis of relative acoustic impedance of the seismic data. The Gage reservoir forms part of a sand-rich submarine fan system and was sub-divided into three units. It ranges from canyon confined inner fan deposits to middle fan deposits on a basin plain and slump deposits adjacent to the palaeotopographic highs. Directions of sediment supply are complex. Initially, the major sediment contributions are from a northern and southern canyon adjacent to the Badaminna Fault Zone. These coalesce in the inner middle fan and move westward onto the plain producing the outer middle fan. As time progresses sediment supply from the east becomes more significant. Although much of the submarine fan complex is not penetrated by wells, the inner fan is interpreted to contain stacked channelized high energy turbidity currents and debris flows that would provide the most suitable reservoir target due to good vertical and lateral sand connectivity. The middle outer fan deposits are predicted to contain finer-grained material hence would have poorer lateral and vertical communication.

  • Poster describing how GA made the WASANT palaeovalley map (GEOCAT #73980).