Geochemistry
Type of resources
Keywords
Publication year
Service types
Topics
-
Regolith carbonate or secondary carbonate is a key component of the regolith, particularly in many Mediterranean, arid and semi-arid regions of Australia. National maps of regolith carbonate distribution have been compiled from regional soil, regolith and geological mapping with varying degrees of confidence and consistency. Here we apply a decision tree approach based on a piecewise linear regression model to estimate and map the near-surface regolith carbonate concentration at the continental scale. The model is based on relationships established from the 1311 field sites of the National Geochemical Survey of Australia (NGSA) and 49 national environmental covariate datasets. Regolith carbonate concentration (weight %) was averaged from the <2 mm grain size-fractions of samples taken from two depth ranges (0-10 cm and ~60-80 cm) at each NGSA site. The final model is based on the average of 20 runs generated by randomly selecting 90% training and 10% validation splits of the input data. Results present an average coefficient of determination (R2) of 0.56 on the validation dataset. The covariates used in the prediction are consistent with our understanding of the controls on the sources (inputs), preservation and distribution of regolith carbonate within the Australian landscape. The model produces a continuous, quantitative prediction of regolith carbonate abundance in surficial regolith at a resolution of 90 m with associated estimates of model uncertainty. The model-derived map is broadly consistent with our current knowledge of the distribution of carbonate-rich soil and regolith in Australia. This methodology allows the rapid generation of an internally consistent and continuous layer of geoinformation that may be applicable to other carbonate-rich landscapes globally. The methodology used in this study has the potential to be used in predicting other geochemical constituents of the regolith.
-
Top outlet sediments from the National Geochemical Survey of Australia (NGSA) have been extracted with Mobile Metal Ion (MMIR) solution and analyzed for over 50 elements including gold (Au). The MMIR Au results from this low density survey show discrete coherent anomalies for Au in the vicinity of many of Australia's known gold deposits, and in the vicinity of some minor gold occurrences. In several instances catchment outlet anomalies for Au have been recorded from areas not known to contain significant economic gold. Several large economic gold deposits are shown to not produce anomalies in catchment outlet samples. A survey of overbank samples in the Swan Avon Catchment of Western Australia at double the sampling density shows that low level anomalies (MMIR Au>1ppb) can be traced back to source using overbank sediments. Follow-up of one of the NGSA Au anomalies at Kent River in previously regarded non-auriferous terrain (western Albany-Fraser Belt) indicates a non-economic but perhaps geochemically significant Au anomaly with associated pathfinders including palladium. This may indicate that further exploration of the western part of Albany Fraser Belt for Au is warranted. The combination of catchment overbank samples and high-resolution MMIR technique has been shown to be effective at locating the source of gold anomalies from initial low-density continental and regional surveys.
-
This resource contains a predicted total sediment metabolism grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted total sediment metabolism grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.
-
A major purpose of the study, as it appears to me at this time, is to ascertain the presence of geochemical anomalies in the area of (copper) mineralization. Such anomalies, if established, may be correlated with the dispersion train phenomena and with the dispersion halo of the ore, in an area known as mineralization. A comparable study may be undertaken then, depending on the advice of the team, in an area of suspected but not known, mineralization. Further investigations, beyond the reconnaissance stage, may be projected, in consultation with the team, on completion of the orientation study. This report contains the author's tentative remarks on a proposed reconnaissance in South Australia. Objectives, background to the work, methods, and proposed operations are discussed.
-
This resource contains a predicted chlorin index standard error grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted chlorin index standard error grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.
-
This resource contains a predicted aluminium grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted aluminium grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.
-
Several belts of poorly-exposed igneous rocks occur in the Grampians-Stavely Zone of western Victoria, close to the interpreted Cambrian east Gondwana continental margin. Previous geochemical studies on the outcropping igneous rocks around Mount Stavely, Mount Dryden and in the Black Range have recognised characteristics similar to those found in modern magmatic arcs. These rocks are collectively considered to form part of a single Middle to Late Cambrian arc system, referred to as the Stavely Arc. While outcropping examples of the Stavely Arc magmas are well studied, the character of other (likely) arc-related rocks imaged by magnetic data beneath recent, thin cover has remained enigmatic. New geochemical data from a recent stratigraphic drilling program, together with analysis of rocks from government and industry drill holes has allowed for a more complete understanding of the Stavely Arc package. A range of rock associations have been recognised, including low-Ti boninite-like rocks, back-arc-related tholeiitic rocks, adakitic porphyry intrusives, serpentinites, and highly-depleted mafic to intermediate volcanics and intrusives. The majority of arc-related rocks comprise low- to high-K calc-alkaline basalt, andesite, dacite, and geochemically-related quartz diorite, which display similar N-MORB-normalised trace element patterns, LREE-enriched REE patterns and moderately evolved to weakly juvenile Nd isotopic compositions (Nd 500 Ma = -3.95 to +0.46). High-Al basalts intersected during stratigraphic drilling also show weakly-developed calc-alkaline compositions. However, these are distinguished from the other calc-alkaline rocks by higher Al2O3, N-MORB-like trace element patterns, relatively flat REE patterns and much more juvenile Nd isotopic compositions (Nd 500 Ma = +4.73 to +6.33). High-Al basalts are spatially associated with boninites intersected by mineral exploration drilling. The earliest geochronological evidence for Stavely Arc magmatism is provided by an isotopically juvenile felsic intrusive with an interpreted arc-related origin dated at ~510 Ma. This age is synchronous with tholeiitic dolerite from the western Grampians-Stavely Zone interpreted to have been emplaced in a back-arc extensional setting. Available ages for volcanic rocks of the Stavely Arc are only known from the Mount Stavely Belt, and show that arc magmatism reached maturity around ~505-500 Ma. Overall geochemical systematics suggest that the majority of calc-alkaline rocks of the Stavely Arc have affinities with modern island arcs with (limited) continental crust involvement. It is unlikely that the thickness of any pre-existing Precambrian crust was great, given the Nd isotopic compositions and lack of inherited Mesoproterozoic or older zircons. In comparison, the more juvenile isotopic characteristics, weakly-developed subduction-related features, and spatial association with boninites of the high-Al basalts are more consistent with a more primitive arc setting, and may represent an (early?) phase of Stavely Arc magmatism in which there was insignificant crustal involvement. Similar geochemical characteristics, ages, and inferred tectonic setting are consistent with the Stavely Arc forming part of a larger Middle to Late Cambrian arc system that also includes the Mount Wright Arc in New South Wales and the Jamison Volcanic Group (Selwyn Block) in central Victoria.
-
This resource contains a predicted carbon – nitrogen ratio standard error grid for the greater Darwin Harbour region as part of a baseline seabed mapping program of Darwin Harbour and Bynoe Harbour. This project was funded through offset funds provided by an INPEX-led Ichthys LNG Project to the Northern Territory Government’s Department of Environment and Natural Resources (NTG-DENR) with co-investment from Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS). The intent of this program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps and information to underpin marine resource management decisions. The predicted carbon – nitrogen ratio standard error grid was derived from a compilation of multiple surveys undertaken by GA, AIMS and NTG-DENR between 2011 and 2017, including GA0333 (Siwabessy et al., 2015), GA0341 (Siwabessy et al., 2015), GA0351/SOL6187 (Siwabessy et al., 2016), GA4452/SOL6432 (Siwabessy et al., 2017), GA0356 (Radke et al., 2017), and GA0358 and GA0359 (Radke et al., 2018), adding to those from previous surveys GA4425 and GA0333 collected by GA, AIMS, NTG-DENR and Darwin Port Authority.
-
This web service contains sediment and geochemistry data for the Oceanic Shoals Commonwealth Marine Reserve (CMR) in the Timor Sea collected by Geoscience Australia during September and October 2012, on RV Solander (survey GA0339/SOL5650).
-
The International Geo-Sample Number (IGSN) provides a globally unique identifier for physical samples used to generate analytical data. This unique identifier provides the ability to link each physical sample to any analytical data undertaken on that sample, as well as to any publications derived from any data derived on the sample. IGSN is particularly important for geochemical and geochronological data, where numerous analytical techniques can be undertaken at multiple analytical facilities not only on the parent rock sample itself, but also on derived sample splits and mineral separates. Australia now has three agencies implementing IGSN: Geoscience Australia, CSIRO and Curtin University. All three have now combined into a single project, funded by the Australian Research Data Services program, to better coordinate the implementation of IGSN in Australia, in particular how these agencies allocate IGSN identifiers. The project will register samples from pilot applications in each agency including the CSIRO National Collection of Mineral Spectra database, the Geoscience Australia sample collection, and the Digital Mineral Library of the John De Laeter Centre for Isotope Research at Curtin University. These local agency catalogues will then be aggregated into an Australian portal, which will ultimately be expanded for all geoscience specimens. The development of this portal will also involve developing a common core metadata schema for the description of Australian geoscience specimens, as well as formulating agreed governance models for registering Australian samples. These developments aim to enable a common approach across Australian academic, research organisations and government agencies for the unique identification of geoscience specimens and any analytical data and/or publications derived from them. The emerging pattern of governance and technical collaboration established in Australia may also serve as a blueprint for similar collaborations internationally.