From 1 - 10 / 225
  • Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Lindsay-Wallpolla study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Group's assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.

  • The Frome airborne electromagnetic (AEM) survey is the largest of three regional AEM surveys flown under the 5-year Onshore Energy Security Program (OESP) by Geoscience Australia (GA). The aim of the survey is to reduce risk and stimulate exploration investment for uranium by providing reliable pre-competitive data. The Frome AEM survey was flown between 22 May and 2 November 2010, is approximately 95 450 km2 in area and collected 32 317 line km of new data at an average flying height of 100 m. The Frome AEM survey covers the Marree (pt), Callabonna (pt), Copley (pt), Frome (pt), Parachilna (pt), Curnamona, Olary and Chowilla (pt) 1:250 000 standard map sheets in South Australia and was flown largely at 2.5 km line spacing, with the northern portion flown at 5 km line spacing. GA partnered with, the Department of Primary Industries and Resources South Australia and an industry consortium. The survey results indicate a depth of investigation (DOI - depth of reliable signal penetration) of up to 400 m in areas of thin cover and resistive basement (e.g., Adelaidean rocks in the Olary Ranges). In Cenozoic - Mesozoic sediments in the Frome Embayment and the Murray Basin the DOI is up to 100-150 m. A range of under-cover features are revealed, including (but not limited to): extensions to known palaeovalley networks in the Frome Embayment; the under-cover extent of the Benagerie Ridge; regional faults in the Frome Embayment and Murray Basin; folded and faulted Neoproterozoic rocks in the Adelaide Fold Belt; Cenozoic - Mesozoic stratigraphy in the Frome Embayment; neotectonic offsets in the Lake Eyre Basin; conductive Neoproterozoic rocks associated with copper-gold mineralisation; and, coal-bearing structures in the Leigh Creek area, as well as groundwater features.

  • More recently the O'Farrell government has called for expressions of interest to explore for uranium across NSW. Fugro Airborne Services Pty Ltd also called for expressions of interest in flying a large TEMPEST AEM survey in NSW covering the NSW Curnamona Province and portions of the Murray-Darling Basin and Lake Eyre Basin, abutting the SA border, to complement the Frome AEM Survey. The following is a brief summary of some of the main points discussed and presented during 3 presentations at the NSWGS on 19 September 2012, and in follow-up discussions on 20 September 2012. Approximately 40 people attended the three presentations. A discussion after the talks centred around using AEM in NSW for regional mapping including for uranium, porphyry copper-gold systems and massive sulphide systems. PowerPoint presentations were left with NSWGS. Three abstracts describing these presentations are included at the end of this document.

  • The Ord Valley Airborne Electromagnetic (AEM) Interpretation Project (OVAEIP) was a collaborative project between the Ord Irrigation Cooperative (OIC), the Cooperative Research Centre for Landscape, Environments and Mineral Exploration (CRC LEME), Geoscience Australia (GA) and CSIRO, co-funded by both the Australian and Western Australian Governments. The aim was to provide comprehensive spatial information to address specific questions on salinity and groundwater management in the existing Ord Irrigation Area (ORIA) and those earmarked for irrigation expansion. The project included the acquisition of 5936 line km of AEM data using the SKYTEM time domain system, and a Light Ranging and Detection (LiDAR) DEM. This data was used in conjunction with geomorphic mapping, ground and downhole geophysics, drilling information and pre-existing hydrogeological data to produce a suite of derived spatial products including maps of salinity hazard, salt stores, groundwater salinity and lithology. The spatial analysis and interpretation of constrained AEM data and geological mapping have delineated the lithostratigraphy in 3D, including sand and gravel filled palaeochannels, clay and silt distribution, as well as salt stores and groundwater quality. Surface salinity hazard maps were derived using the spatial analysis of LANDSAT-5 TM, AEM, hydrogeological and geomorphic data. The study demonstrated the effectiveness of GIS and geospatial analysis within an integrated approach with products providing a framework for future irrigation development. Outputs include a comprehensive GIS for spatial interrogation and hard-copy atlases for use by stakeholders and local landholders.

  • Extended abstract regarding the Frome AEM data set and Murray Basin geology and landscape evolution

  • Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Lindsay-Wallpolla study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Group's assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.

  • Short article describing a new method of defining depth of investigation for airborne electromagnetic surveys

  • Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Liparoo - Robinvale study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Groups assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.

  • Geoscience Australia contracted an airborne electromagnetic (AEM) survey over the Frome Embayment, South Australia, under the Australian Government's Onshore Energy Security Program. The Frome AEM survey was acquired using the Fugro Airborne Surveys (FAS) TEMPEST fixed wing time-domain electromagnetic (TEM) AEM system. The acquisition and processing of data were carried out by FAS under contract to Geoscience Australia. The Frome AEM survey consists of 32 300 line km, covering a total area of 95 000 km2 and was flown between 19 May and 2 November 2010. The survey was designed to deliver reliable, pre-competitive AEM data and scientific analysis of the energy resource potential of the Frome region of South Australia, including the flanks of the Northern Flinders Ranges, the Frome Embayment, the Olary Ranges and the northwestern Murray Basin. The survey data may also be used as an input to groundwater studies in the region. This presentation was given at a Frome AEM Workshop in Adelaide - November 2011.