AEM
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
Predictive maps of the subsurface can be generated when geophysical datasets are modelled in 2D and 3D using available geological knowledge. Inversion is a process that identifies candidate models which explain an observed dataset. Gravity, magnetic, and electromagnetic datasets can now be inverted routinely to derive plausible density, magnetic susceptibility, or conductivity models of the subsurface. The biggest challenge for such modelling is that any geophysical dataset may result from an infinite number of mathematically-plausible models, however, only a very small number of those models are also geologically plausible. It is critical to include all available geological knowledge in the inversion process to ensure only geologically plausible physical property models are recovered. Once a set of reasonable physical property models are obtained, knowledge of the physical properties of the expected rocks and minerals can be used to classify the recovered physical models into predictive lithological and mineralogical models. These predicted 2D and 3D maps can be generated at any scale, for Government-funded precompetitive mapping or drilling targets delineation for explorers.
-
Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Barr Creek - Gunbower study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Groups assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.
-
The 'River Murray Corridor (RMC) Salinity Mapping Project', provides important new information in relation to salinity hazard and management along in a 20 km-wide swath along a 450 km reach of the River Murray. The project area contains iconic wetlands, national and state forest parks, irrigation and dryland farming assets and the Murray River, significant areas of which are at risk from increasing salinisation of the River, the floodplain, and underlying groundwater resources. The project utilised a hydrogeological systems approach to integrate and analyse data obtained from a large regional airborne electromagnetic (AEM) survey (24,000 line km @ 150m line-spacing in a 20 km-wide swath along the Murray River), field mapping, and lithological and hydrogeochemical data obtained from drilling. New holistic inversions of the AEM data have been used to map key elements of the hydrogeological system and salinity extent in the shallow sub-surface (top 20-50 m). The Murray River is known to display great complexity in surface-groundwater interactions along its course. Electrical geophysical methods (such as AEM) are able to map surface-groundwater interaction due to the contrast between (electrically resistive) fresh water in the river, and (electrically conductive) brackish to saline groundwater in adjacent sediments. The location of significant river flush zones is influenced both by underlying geology and the location of locks, weirs and irrigation districts. The study has also identified significant areas of high salinity hazard in the floodplain and river, and quantified the salt store and salt load across the floodplain. The study has also identified sub-surface factors (including saline groundwater, shrinking flush zones, declining water tables) linked to vegetation health declines.
-
The Pine Creek AEM survey was flown over the Pine Creek Orogen in the Northern Territory during 2008 and 2009 as part of the Australian Government's Onshore Energy Security Program at Geoscience Australia (GA). The survey covers an area of 74,000 km2 from Darwin to Katherine in the Northern Territory which hosts several world class deposits, including the Ranger Uranium Mine, Nabarlek, Mt Todd, Moline and Cosmo Howley. Aimed at regional mapping, uranium exploration, reducing exploration risk and promoting exploration activity, the program worked closely with industry partners to infill wide regional line spacing (5km) with deposit scale line spacing (less than 1km). The survey results are relevant in exploration for a variety of commodities and resources, including uranium, copper, lead, zinc, gold, nickel and groundwater. Geoscience Australia's interpretation products include sample-by-sample layered earth inversion products comprising located data, geo-located conductivity depth sections, depth slice grids, elevation slice grids, inversion report and an interpretation report. All data and products are available from GA as well as the Northern Territory Geological Survey Geophysical Image Web Server.
-
The Pine Creek AEM survey was flown over the Pine Creek Orogen in the Northern Territory during 2008 and 2009 as part of the Australian Government's Onshore Energy Security Program at Geoscience Australia (GA). The survey provides pre-competitive data for enhancing uranium and other mineral exploration. Flight line spacing was 1666 m and 5000 m covering an area of 74,000 km2 (roughly the size of Tasmania) which hosts several uranium deposits, including the Ranger Uranium Mine, Rum jungle, Ranger and Nabarlek. The region is also prospective for metals including copper, lead, zinc, gold, tin, rare earths, tantalum, tungsten, molybdenum and nickel. The Pine Creek AEM survey comprises three areas: Kombolgie to the east of Kakadu National Park; Woolner Granite near Darwin; and, Rum Jungle to the west of Kakadu National Park. Collaboration with the National Water Commission and eight private infill companies brought an additional investment of approximately $1 m into the survey, with follow-up exploration equal to or exceeding this amount. The Woolner Granite and Rum Jungle survey area data were acquired using the TEMPEST fixed wing AEM system. The acquisition and processing were carried out by Fugro Airborne Surveys Pty. Ltd., under contract to GA. The Woolner Granite and Rum Jungle surveys were flown between August 2008 and May 2009 and the data were publicly released by GA in July and September 2009 respectively. In the Kombolgie survey area, the data were acquired a by Geotech Airborne Pty. Ltd. using the VTEM helicopter AEM system. The survey was flown between August and November of 2008, and additional calibration flights relating to the survey were flown in April 2009. The Kombolgie data were publicly released by GA in December 2009.
-
Airborne Geophysical Data Acquired as part of the Gawler Mineral Promotion Project. Includes point located, gridded and image data. TEMPEST electromagnetics, magnetics and elevation data.
-
The Ord Valley Airborne Electromagnetics (AEM) Interpretation Project was undertaken to provide information in relation to salinity and groundwater management in the Ord River Irrigation Area (ORIA), and to guide its future expansion. The project included the acquisition of 5,936 line km of AEM data acquired using the SKYTEM time domain system, the acquisition of a Light Ranging and Detection (LiDAR) survey, and complementary drilling, borehole geophysics, laboratory analysis and interpretation services. Within the limits of available bore data and the scales of airborne data acquisition, this study provided greater spatial detail on critical elements of the hydrostratigraphy in the sedimentary alluvial aquifer systems. This included the indicative 3D extent and thickness of gravel, sand, silt, clay units as well as salt stores and groundwater quality. It also produced first generation of salinity hazard maps. The AEM mapping identified discrete palaeochannels, interpreted as elements of the palaeo-Ord drainage system. Overall, the amount and extent of gravel and sand aquifers present in the study area was significantly less than previously thought, with gravel aquifers present in laterally confined palaeochannel systems. There was also several buried bedrock ridges and shallow pediments that were interpreted to reduce aquifer storage and throughflow. In the Mantinea Plain-Carlton Hill-Parry's Lagoon area, the presence of a marine sand aquifer containing very saline groundwater was confirmed. The 3D mapping provided an important framework for hydrodynamic analysis and hydrogeochemical process studies. In summary, the project demonstrated the potential for 'calibrated' AEM systems and iTEM Fast Approximate Inversion software to shorten project timelines for studies that involve the analysis and interpretation of AEM data.
-
The Ord Valley Airborne Electromagnetic (AEM) Interpretation Project (OVAEIP) was a collaborative project between the Ord Irrigation Cooperative (OIC), the Cooperative Research Centre for Landscape, Environments and Mineral Exploration (CRC LEME), Geoscience Australia (GA) and CSIRO, co-funded by both the Australian and Western Australian Governments. The aim was to provide comprehensive spatial information to address specific questions on salinity and groundwater management in the existing Ord Irrigation Area (ORIA) and those earmarked for irrigation expansion. The project included the acquisition of 5936 line km of AEM data using the SKYTEM time domain system, and a Light Ranging and Detection (LiDAR) DEM. This data was used in conjunction with geomorphic mapping, ground and downhole geophysics, drilling information and pre-existing hydrogeological data to produce a suite of derived spatial products including maps of salinity hazard, salt stores, groundwater salinity and lithology. The spatial analysis and interpretation of constrained AEM data and geological mapping have delineated the lithostratigraphy in 3D, including sand and gravel filled palaeochannels, clay and silt distribution, as well as salt stores and groundwater quality. Surface salinity hazard maps were derived using the spatial analysis of LANDSAT-5 TM, AEM, hydrogeological and geomorphic data. The study demonstrated the effectiveness of GIS and geospatial analysis within an integrated approach with products providing a framework for future irrigation development. Outputs include a comprehensive GIS for spatial interrogation and hard-copy atlases for use by stakeholders and local landholders.
-
Under the Community Stream Sampling and Salinity Mapping Project, the Australian Government through the Department of Agriculture, Fisheries and Forestry and the Department of Environment and Heritage, acting through Bureau of Rural Sciences, funded an airborne electromagnetic (AEM) survey to provide information in relation to land use questions in selected areas along the River Murray Corridor (RMC). The proposed study areas and major land use issues were identified by the RMC Reference Group at its inception meeting on 26th July, 2006. This report has been prepared to facilitate recommendations on the Liparoo - Robinvale study area. The work was developed in consultation with the RMC Technical Working Group (TWG) to provide a basis for the RMC Reference Group and other stake holders to understand the value and application of AEM data to the study area. This understanding, combined with the Reference Groups assessment of the final results and taking in account policy and land management issues, will enable the Reference Group to make recommendations to the Australian Government.
-
Geoscience Australia is a proscribed agency of the Australian Government, and has been acquiring precompetitive geophysics over the Australian continent and making it available to industry and researchers for over fifty years. Geophysical methods are especially important for effective exploration in Australia because the ancient landscape has been deeply weathered and fresh rocks are concealed beneath a thick layer of weathered material, referred to as regolith. The Onshore Energy Security Program is Geoscience Australia's latest precompetitive program and is designed to reduce risk in exploration for Australia's onshore hydrocarbon, uranium, thorium, and geothermal energy resources. The program will acquire and deliver pre-competitive geophysical and geochemical data as well as geological interpretations and other value-added products for the exploration industry.