Minerals
Type of resources
Keywords
Publication year
Service types
Topics
-
Exploring for the Future was a $100.5 million initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. The four-year program (2016-2020) focused on northern Australia and parts of South Australia. The under-explored northern Australian region offers enormous potential for industry development and is advantageously located close to major global markets. Geoscience Australia's leading scientists used and developed new innovative techniques to gather new scientific data and information, on an unprecedented scale, about the potential mineral, energy and groundwater resources concealed beneath the surface. This work was undertaken in greenfield areas, where the Exploring for the Future program had the greatest impact. This dataset depicts the geographical extents of the various projects undertaken as part of this program, with an indicative total spend for each
-
<div>Mount Isa Province in northern Australia is one of the world's most strongly endowed regions for base metals and host to major iron-oxide-copper-gold (IOCG) deposits. The Carpentaria Conductivity Anomaly at the eastern margin of the Province is a major electrical conductivity structure of the Australian continent. We have used magnetotelluric and deep seismic reflection data to image the crustal architecture in this complex region to understand the crustal-scale fluid pathways and potential mineral occurrences. The resistivity models reveal a number of prominent crustal-scale conductors, suggesting that the Carpentaria Conductivity Anomaly is likely caused by a series of isolated or interconnected bodies. These conductors characterise the position and geometry of the ancient Gidyea Suture Zone, interpreted as a west-dipping subduction zone. The conductivity anomaly may record the activity of fluid hydration involved during a subduction event, with the enhanced conductivity likely being caused by deformation or mineralisation of graphitic or sulfidic rocks during orogensis. The distribution of known gold and copper deposits shows a close spatial correlation with the suture zone, suggesting that this structure is potentially a fundamental control on IOCG deposits in its vicinity. The interpretation of the seismic image shows a good correlation with the resistivity models. The implication is that crustal-penetrating structures act as potential pathways for fluid movement to form mineral deposits in the upper crust. The significance of mapping such structures using geophysics is highlighted for mineral exploration.</div><div><br></div>This Abstract was submitted/presented to the 2022 Sub 22 Conference 28-30 November (http://sub22.w.tas.currinda.com/)
-
How do some of the rocks in Minecraft form and behave in real life? This short video discusses bedrock, obsidian and redstone using real rock samples and references to the game.
-
A colour poster comparing the concepts in the computer game Minecraft with the geology of particular minerals and rocks. Aimed at school children, for display in classrooms. Designed to be printed at A2, but can also be printed smaller.
-
A second colour poster comparing the concepts in the computer game Minecraft with particular minerals and rocks. Aimed at school children, for display in classrooms. Designed to be printed at A2, but can also be printed smaller.
-
This mineral collection comprises 13,000+ locality based museum quality specimens derived from BMR/AGSO/GA field survey programs, from external organisations (e.g. Australian Museums, state geological surveys), or from donations or bequests by private collectors. It includes specimens from all over the world with a strong emphasis on minerals from Broken Hill.
-
The Exploring for the Future program Virtual Roadshow was held on 7 July and 14-17 July 2020. The Minerals session of the roadshow was held on 14 July 2020 and consisted of the following presentations: Introduction - Richard Blewett Preamble - Karol Kzarnota Surface & Basins or Cover - Marie-Aude Bonnardot Crust - Kathryn Waltenberg Mantle - Marcus Haynes Zinc on the edge: New insights into sediment-hosted base metals mineral system - David Huston Scale reduction targeting for Iron-Oxide-Copper-Gold in Tennant Creek and Mt Isa - Anthony Schofield and Andrew Clark Economic Fairways and Wrap-up - Karol Czarnota
-
<div>A keynote talk talk given at Uncover Curnamona 2022 by Angela O'Rourke outlining the rationale, work program and new data acquisition for Geoscience Australia's Darling-Curnamona-Delamerian Project within Exploring for the Future</div> This presentation was given to the 2022 Uncover Curnamona 2022 Conference 31 May - 2 June:<br>(https://www.gsa.org.au/common/Uploaded%20files/Events/Uncover%20Curnamona%202021/UC2022_short_program_A4_web%20(003).pdf)
-
<div>The study utilised Geoscience Australia’s vast data collection of mineral occurrences to identify the range of historical discoveries within the Officer-Musgrave, Darling-Curnamona - Delameian and Barkly - Isa - Georgetown Deep Dive areas. A literature review shed light on exploration discovery methods, commodity grades, exploration histories and deposit types. Many critical mineral occurrences were overlooked or ignored in the past, as the commodity discovered was not of interest or value at the time, or grades were regarded as sub-economic. However, with modern methods of mining, ore treatment techniques and increased demand, reassessment could now provide new opportunities.</div>
-
<div>This look-book was developed to accompany the specimen display in the office of the Hon Madeleine King MP, Minister for Resources and Northern Australia. It contains information about each of the specimens including their name, link to resource commodities and where they were from. </div><div><br></div><div>The collection was carefully curated to highlight some of Australia’s well known resources commodities as well as the emerging commodities that will further the Australian economy and contribute to the low energy transition. The collection has been sourced from Geoscience Australia’s National Mineral and Fossil Collection. </div><div><br></div><div>The collection focuses on critical minerals, ore minerals as well as some fuel minerals. These specimens align with some of Geoscience Australia major projects including the Exploring For the Future (EFTF) program, the Trusted Environmental and Geological Information program (TEGI) as well as the Repository and the public education and outreach program. </div>