From 1 - 10 / 20
  • In April 2015 Geoscience Australia (GA) acquired 908 km (full-fold) Gippsland Southern Margin Infill 2D Seismic data using Gardline's M/V Duke. The survey is designed to better resolve the Foster Fault System and provide better integration between the GDPI10 survey and the existing surveys in the central deep. The data underwent pre-stack depth migration with a deghosting algorithm during processing. The dataset includes intermediate processing products as well as final preSTM and preSDM and associated velocities.

  • This Record forms part of a study under the Exploring For The Future (EFTF) program (2020-2024). The Residual Oil Zone Project was designed to understand and identify residual oil zones in Australia, with the aim of developing this potential hydrocarbon and CO2 geological storage resource through CO2–Enhanced Oil Recovery. The work presented here is a collaborative study between Geoscience Australia and GeoGem Consultants. Residual Oil Zones (ROZ) represent a new and potentially viable oil resource for Australia, while at the same time providing a means to use and store carbon dioxide (CO2) through the application of CO2 enhanced oil recovery (CO2-EOR). These naturally water-flooded and water-saturated reservoirs, which contain a moderate amount of residual oil, can be associated with conventional fields (brownfields) or occur with no associated main pay zone (greenfields). Both types of ROZ are currently produced commercially through CO2-EOR in the USA, and are of growing interest internationally, but have not yet been explored in Australia. CO2-EOR has been in widespread practice in the USA since the oil shocks of the 1970’s. While tertiary CO2 injection usually targets oil remaining in fields that have been subject to water-flooding, there has been a parallel adoption of practices to recover vast amounts of paleo-oil that existed when many of these reservoirs were much fuller, before relatively recent (in geologic time) events caused structural and seal changes, resulting in natural water-flooding and/or migration of much of the oil out of the reservoir. The Permian Basin in Texas contains many examples where such Residual Oil Zones (ROZ’s) were found beneath conventional oil reservoirs. These ROZ are unproductive to conventional water flood operations but offer the possibility of an extra 9-15% recovery (of the ROZ OIP at discovery). This work reviews the lessons or insights that can be gained from the USA regarding ROZ field developments.

  • This web service shows the spatial locations of potential CO2 storage sites that are at an advanced stage of characterisation and/or development. The areas considered to be at an advanced stage are parts of the Cooper Basin in central Australia, a portion of the Surat Basin (Queensland), the offshore Gippsland Basin (Victoria), where the CarbonNet Project is currently at an advanced stage of development and the Petrel Sub-basin. This service will be presented in the AusH2 Portal.

  • This web service shows the spatial locations of potential CO2 storage sites that are at an advanced stage of characterisation and/or development. The areas considered to be at an advanced stage are parts of the Cooper Basin in central Australia, a portion of the Surat Basin (Queensland), the offshore Gippsland Basin (Victoria), where the CarbonNet Project is currently at an advanced stage of development and the Petrel Sub-basin. This service will be presented in the AusH2 Portal.

  • This dataset shows the spatial locations of potential CO2 storage regions that are at an advanced stage of characterisation and/or development and are expected to be operating by 2030. The areas considered to be at an advanced stage are parts of the Cooper Basin in central Australia, a portion of the Surat Basin (Queensland) and the offshore Gippsland Basin (Victoria), where the CarbonNet Project is currently at an advanced stage of development. We have also considered the offshore Barrow Sub-basin (part of the Northern Carnarvon Basin) (WA), where the Gorgon CO2 Injection Project is occurring on Barrow Island. An earlier version of this dataset was originally published in Feitz et al (2019) “Prospective hydrogen production regions of Australia” and the current version has been updated to include a portion of the offshore Petrel Sub-basin (Bonaparte Basin), offshore Northern Territory. This dataset is used in Geoscience Australia's Hydrogen Economic Fairways Tool (HEFT), which is available for public use at the AusH2 website or at ga.gov.au/heft. This dataset is published with the permission of the CEO, Geoscience Australia.

  • Internationally, the number of carbon capture and storage (CCS) projects has been increasing with more than 61 new CCS facilities added to operations around the globe in 2022, including six projects in Australia (GCCSI, 2022). The extraction of reservoir fluid will be an essential component of the CCS workflow for some of projects in order to manage reservoir pressure variations and optimise the subsurface storage space. While we refer to reservoir fluid as brine throughout this paper for simplicity, reservoir fluids can range from brackish to more saline (briny) water. Brine management requires early planning, as it has implications for the project design and cost, and can even unlock new geological storage space in optimal locations. Beneficial use and disposal options for brine produced as a result of carbon dioxide (CO2) storage has been considered at a regional or national scale around the world, but not yet in Australia. For example, it may be possible to harvest energy, water, and mineral resources from extracted brine. Here, we consider how experiences in brine management across other Australian industries can be transferred to domestic CCS projects.

  • Statements of existing knowledge are compiled for known mineral, coal, hydrocarbon and carbon capture and storage (CCS) resources and reserves in the Adavale Basin. This data guide illustrates the current understanding of the distribution of these key resource types within the Adavale Basin region based on trusted information sources. It provides important contextual information on the Adavale Basin and where additional details on discovered resources can be found. So far, mineral deposits have not been found in the Adavale Basin. There are no coal deposits found in the basin itself, but 6 large coal deposits exist in the overlying basins in the Adavale Basin region. Historically, some small conventional gas resources have been found in the basin. Currently, there are no commercial reserves or available resources identified in the Adavale Basin itself. There are no active or planned carbon capture and storage (CCS) projects in the Adavale basin.

  • Statements of existing knowledge are compiled for known mineral, coal, hydrocarbon and carbon capture and storage (CCS) resources and reserves in the north Bowen Basin. This data guide illustrates the current understanding of the distribution of these key resource types within the north Bowen Basin region based on trusted information sources. It provides important contextual information on the north Bowen Basin and where additional details on discovered resources can be found. The north Bowen Basin contains 17 metallic mineral deposits, with the majority containing gold. The basin also contains 152 thermal and metallurgical coal deposits. Most coal deposits contain metallurgical coal. This basin contains most of Queensland’s metallurgical coal resources, although many of the deposits supply a mix of thermal and metallurgical coal (Blake et al., 2018). The north Bowen Basin hosts very large coal tonnages, with known black coal resources of approximately 47 billion tonnes. Significant hydrocarbon resources are known to exist in the basin, the majority being coal seam gas (CSG). The basin contains more limited reserves and resources of conventional oil and gas and oil shale. At this time, there are no active or planned CCS projects in the basin.

  • Publicly available geological data in the Cooper Basin region are compiled to produce statements of existing knowledge for natural hydrogen, hydrogen storage, coal and mineral occurrences. This data guide also contains assessment of the potential for carbon dioxide (CO2) geological storage and minerals in the basin region. Geochemical analysis of gas samples from petroleum in the basin shows various concentrations of natural hydrogen. However, the generation mechanism of the observed natural hydrogen concentration is still unknown. The mineral occurrences are all found in the overlying basins and are small and of little economic significance. The Cooper Basin has some potential for base metal and uranium deposits due to somewhat suitable formation conditions, but the depth of the basin makes exploration and mining difficult and expensive. This also applies to coal, where there are no identified occurrences or resources in the Cooper Basin. However, if some were identified, the depth of the basin would probably make extraction uneconomic, with the potential exception of coal seam gas extraction. CO2 geological storage assessment in the overlying Eromanga Basin suggests that most areas over the Cooper Basin (except over the Weena Trough in the south-west) are prospective for geological storage CO2.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Galilee Basin. This data guide gives examples of how these data can be used to create the components of a workflow to identify geological storage of carbon dioxide (CO2) opportunities. The data guide is designed to support the data package that provide insights on the geological storage of CO2 in the Galilee Basin. The geological storage of CO2 assessment for the Galilee Basin encompasses 5 geological intervals, termed plays – these have been defined by Wainman et al. (2023). The assessment captures data from well completion reports and government data sources (e.g. Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal) to inform the 4 components required for a potential geological storage of CO2 system. One hundred and sixty-three boreholes in the Galilee Basin were used to map out gross depositional environments and their geological properties relevant for geological storage of CO2. From these datasets, the following properties were evaluated and mapped across the basin: injectivity, storage efficiency, containment and structural complexity. The data are compiled at a point in time to inform decisions on resource development opportunities. The guide outlines the play-based workflow for assessing geological storage of CO2 prospectivity. Each of the elements required for a prospective geological storage of carbon dioxide system are explained and mapped. These data were merged and spatially multiplied to show the relative assessment of geological storage of carbon dioxide prospectivity across the basin at both a play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the geological storage of CO2 prospectivity of the Betts Creek-Rewan Play interval.