From 1 - 10 / 59
  • A dataset of potential geological sequestration sites has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program. Sites have been identified across all Australian sedimentary basins.

  • This web service shows the spatial locations of potential CO2 storage sites that are at an advanced stage of characterisation and/or development. The areas considered to be at an advanced stage are parts of the Cooper Basin in central Australia, a portion of the Surat Basin (Queensland), the offshore Gippsland Basin (Victoria), where the CarbonNet Project is currently at an advanced stage of development and the Petrel Sub-basin. This service will be presented in the AusH2 Portal.

  • This web service features Australian hydrogen projects that are actively in the investigation, construction, or operating phase, and that align with green hydrogen production methods as outlined in Australia's National Hydrogen Strategy. The purpose of this dataset is to provide a detailed snapshot of hydrogen activity across Australia, and includes location data, operator/organisation details, and descriptions for all hydrogen projects listed.

  • This web service features Australian hydrogen projects that are actively in the investigation, construction, or operating phase, and that align with green hydrogen production methods as outlined in Australia's National Hydrogen Strategy. The purpose of this dataset is to provide a detailed snapshot of hydrogen activity across Australia, and includes location data, operator/organisation details, and descriptions for all hydrogen projects listed.

  • All commercially produced hydrogen worldwide is presently stored in salt caverns. The only known thick salt accumulations in eastern Australia are found in the Boree Salt of the Adavale Basin in central Queensland. The Boree Salt consists predominantly of halite and is considered to be suitable for hydrogen storage. In 2021, Geoscience Australia contracted Intrepid Geophysics to perform 3D geological modelling of the Adavale Basin, particularly interested in modelling the Boree Salt deposit in the region. The developed 3D model has identified three main salt bodies of substantial thicknesses (up to 555 m) that may be suitable for salt cavern construction and hydrogen storage. These are the only known salt bodies in eastern Australia and represent potentially strategic assets for underground hydrogen storage. However, there are still unknowns with further work and data acquisition required to fully assess the suitability of these salt bodies for hydrogen storage. Geoscience Australia has transformed Intrepid Geophysics' Adavale Basin 3D Modelling dataset into Petrel. This Petrel dataset is part of Geoscience Australia's Exploring for the Future program. Files including a readme file and Petrel dataset that consists of formation surfaces, faults, borehole information and formation tops. Disclaimer: Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision. This dataset is published with the permission of the CEO, Geoscience Australia.

  • Natural or native molecular hydrogen (H2) can be a major component in natural gas, and yet its role in the global energy sector’s usage as a clean energy carrier is not normally considered. Here, we update the scarce reporting of hydrogen in Australian natural gas with new compositional and isotopic analyses of H2 undertaken at Geoscience Australia. The dataset involves ~1000 natural gas samples from 470 wells in both sedimentary and non-sedimentary basins with reservoir rock age ranging from the Neoarchean to Cenozoic. Pathways to H2 formation can involve either organic matter intermediates and its association with biogenic natural gas or chemical synthesis and its presence in abiogenic natural gas. The latter reaction pathway generally leads to H2-rich (>10 mol% H2) gas in non-sedimentary rocks. Abiogenic H2 petroleum systems are described within concepts of source-migration-reservoir-seal but exploration approaches are different to biogenic natural gas. Rates of abiogenic H2 generation are governed by the availability of specific rock types and different mineral catalysts, and through chemical reactions and radiolysis of accessible water. Hydrogen can be differently trapped compared to hydrocarbon gases; for example, pore space can be created in fractured basement during abiogenic reactions, and clay minerals and evaporites can act as effective adsorbents, traps and seals. Underground storage of H2 within evaporites (specifically halite) and in depleted petroleum reservoirs will also have a role to play in the commercial exploitation of H2. Estimated H2 production rates from water radiolysis in mafic-ultramafic and granitic rocks and serpentinisation of ultramafic-mafic rocks gives a H2 inferred resource potential between ~1.6 to ~58 MMm3 y-1 for onshore Australia down to a depth of 1 km. The prediction and subsequent identification of subsurface H2 that can be exploited remains enigmatic and awaits robust exploration guidelines and targeted drilling for proof of concept. Appeared in The APPEA Journal 61(1) 163-191, 2 July 2021

  • This web service depicts potential geological sequestration sites and has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program (1999-2002).

  • This web service depicts the locations of onshore depleted gas fields, underground gas storage facilities and known, thick underground halite deposits, all with the potential for large scale hydrogen storage.

  • This web service depicts the locations of onshore depleted gas fields, underground gas storage facilities and known, thick underground halite deposits, all with the potential for large scale hydrogen storage.

  • Hydrogen can be used for a variety of domestic and industrial purposes such as heating and cooking (as a replacement for natural gas), transportation (replacing petrol and diesel), and energy storage (by converting intermittent renewable energy into hydrogen). The key benefit of using hydrogen is that it is a clean fuel that emits only water vapour and heat when combusted. To support implementation of the National Hydrogen Strategy, Geoscience Australia in collaboration with Monash University are releasing the Hydrogen Economic Fairways Tool (HEFT). HEFT is a free online tool designed to support decision making by policymakers and investors on the location of new infrastructure and development of hydrogen hubs in Australia. It considers both hydrogen produced from renewable energy and from fossil fuels with carbon capture and storage. Tune in to this seminar to discover HEFT’s capabilities, its potential to attract worldwide investment into Australia’s hydrogen industry, and what’s up next for hydrogen at Geoscience Australia.