From 1 - 10 / 19
  • This web service depicts potential geological sequestration sites and has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program (1999-2002).

  • This web service features Australian hydrogen projects that are actively in the investigation, construction, or operating phase, and that align with green hydrogen production methods as outlined in Australia's National Hydrogen Strategy. The purpose of this dataset is to provide a detailed snapshot of hydrogen activity across Australia, and includes location data, operator/organisation details, and descriptions for all hydrogen projects listed.

  • This web service features Australian hydrogen projects that are actively in the investigation, construction, or operating phase, and that align with green hydrogen production methods as outlined in Australia's National Hydrogen Strategy. The purpose of this dataset is to provide a detailed snapshot of hydrogen activity across Australia, and includes location data, operator/organisation details, and descriptions for all hydrogen projects listed.

  • This web service features Australian hydrogen projects that are actively in the investigation, construction, or operating phase, and that align with green hydrogen production methods as outlined in Australia's National Hydrogen Strategy. The purpose of this dataset is to provide a detailed snapshot of hydrogen activity across Australia, and includes location data, operator/organisation details, and descriptions for all hydrogen projects listed.

  • A dataset of potential geological sequestration sites has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program. Sites have been identified across all Australian sedimentary basins.

  • <b>This service will be decommissioned on 31/7/2022. The replacement service (with changes) is located at https://services.ga.gov.au/gis/rest/services/Australian_Hydrogen_Projects/MapServer</b> This web service features Australian hydrogen projects and research centres that are actively in the investigation, construction, or operating phase, and that align with green hydrogen production methods as outlined in Australia's National Hydrogen Strategy. The purpose of this dataset is to provide a detailed snapshot of hydrogen activity across Australia, and includes location data, operator/organisation details, and descriptions for all hydrogen projects and research centres listed.

  • This web service depicts the locations of onshore depleted gas fields, underground gas storage facilities and known, thick underground halite deposits, all with the potential for large scale hydrogen storage.

  • Natural or native molecular hydrogen (H2) can be a major component in natural gas, and yet its role in the global energy sector’s usage as a clean energy carrier is not normally considered. Here, we update the scarce reporting of hydrogen in Australian natural gas with new compositional and isotopic analyses of H2 undertaken at Geoscience Australia. The dataset involves ~1000 natural gas samples from 470 wells in both sedimentary and non-sedimentary basins with reservoir rock age ranging from the Neoarchean to Cenozoic. Pathways to H2 formation can involve either organic matter intermediates and its association with biogenic natural gas or chemical synthesis and its presence in abiogenic natural gas. The latter reaction pathway generally leads to H2-rich (>10 mol% H2) gas in non-sedimentary rocks. Abiogenic H2 petroleum systems are described within concepts of source-migration-reservoir-seal but exploration approaches are different to biogenic natural gas. Rates of abiogenic H2 generation are governed by the availability of specific rock types and different mineral catalysts, and through chemical reactions and radiolysis of accessible water. Hydrogen can be differently trapped compared to hydrocarbon gases; for example, pore space can be created in fractured basement during abiogenic reactions, and clay minerals and evaporites can act as effective adsorbents, traps and seals. Underground storage of H2 within evaporites (specifically halite) and in depleted petroleum reservoirs will also have a role to play in the commercial exploitation of H2. Estimated H2 production rates from water radiolysis in mafic-ultramafic and granitic rocks and serpentinisation of ultramafic-mafic rocks gives a H2 inferred resource potential between ~1.6 to ~58 MMm3 y-1 for onshore Australia down to a depth of 1 km. The prediction and subsequent identification of subsurface H2 that can be exploited remains enigmatic and awaits robust exploration guidelines and targeted drilling for proof of concept. Appeared in The APPEA Journal 61(1) 163-191, 2 July 2021

  • This web service depicts the locations of onshore depleted gas fields, underground gas storage facilities and known, thick underground halite deposits, all with the potential for large scale hydrogen storage.

  • This web service depicts potential geological sequestration sites and has been compiled as part of the Australian Petroleum Cooperative Research Centre's GEODISC program (1999-2002).