Continental Shelf
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
The Timor Sea and its tropical marine environment support significant and growing economic activity including oil and gas exploration. To reduce uncertainty in decision making regarding the sustainable use and ongoing protection of these marine resources, environmental managers and resource users require sound scientific information on the composition and stability of seabed environments and their biological assemblages. Surveys SOL4934 and SOL5117 to the eastern Joseph Bonaparte Gulf were undertaken in August and September 2009 and July and August 2010 respectively, in collaboration with the Australian Institute of Marine Science, with research collaborations from the RAN Australian Hydrographic Office, the Geological Survey of Canada and the Museum and Art Gallery of the Northern Territory. The purpose of these surveys were to develop biophysical maps, and deliver data and information products pertaining to complex seabed environment of the Van Diemen Rise and identify potential geohazards and unique, sensitive environments that relate to offshore infrastructure. This dataset comprises total organic carbon (TOC), Total nitrogen (TN) and organic carbon and nitrogen isotopes on the upper 2cm of seabed sediments. Some relevant publications are listed below: 1. Heap, A.D., Przeslawski, R., Radke, L., Trafford, J., Battershill, C. and Shipboard Party. 2010. Seabed environments of the eastern Joseph Bonaparte Gulf, Northern Australia: SOL4934 Post Survey Report. Geoscience Australia Record 2010/09, pp.81. 2. Anderson, T.J., Nichol, S., Radke, L., Heap, A.D., Battershill, C., Hughes, M., Siwabessy, P.J., Barrie, V., Alvarez de Glasby, B., Tran, M., Daniell, J. & Shipboard Party, 2011b. Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: GA0325/Sol5117 - Post-Survey Report. Geoscience Australia, Record 2011/08, 58pp. 3. Radke, L.C., Li, J., Douglas, G., Przeslawski, R., Nichol, S, Siwabessy, J., Huang, Z., Trafford, J., Watson, T. and Whiteway, T. Characterising sediments of a tropical sediment-starved continental shelf using cluster analysis of physical and geochemical variables. Environmental Chemistry, in press
-
Geoscience Australia marine reconnaissance survey TAN0713 to the Lord Howe Rise offshore eastern Australia was completed as part of the Federal Government's Offshore Energy Security Program between 7 October and 22 November 2007 using the New Zealand Government's research vessel Tangaroa. The survey was designed to sample key, deep-sea environments on the east Australian margin (a relatively poorly-studied shelf region in terms of sedimentology and benthic habitats) to better define the Capel and Faust basins, which are two major sedimentary basins beneath the Lord Howe Rise. Samples recovered on the survey contribute to a better understanding of the geology of the basins and assist with an appraisal of their petroleum potential. They also add to the inventory of baseline data on deep-sea sediments in Australia. The principal scientific objectives of the survey were to: (1) characterise the physical properties of the seabed associated with the Capel and Faust basins and Gifford Guyot; (2) investigate the geological history of the Capel and Faust basins from a geophysical and geological perspective; and (3) characterise the abiotic and biotic relationships on an offshore submerged plateau, a seamount, and locations where fluid escape features were evident. This dataset comprises mineraology data (e.g. concentrations of bulk carbonate, calcite, aragonite, halite, quartz) from seanbed sediments (0-2cm). Some relevant publications which pertain to these datasets include: 1. Heap, A.D., Hughes, M., Anderson, T., Nichol, S., Hashimoto, T., Daniell, J., Przeslawski, R., Payne, D., Radke, L., and Shipboard Party, (2009). Seabed Environments and Subsurface Geology of the Capel and Faust basins and Gifford Guyot, Eastern Australia - post survey report. Geoscience Australia, Record 2009/22, 166pp. 2. Radke, L.C. Heap, A.D., Douglas, G., Nichol, S., Trafford, J., Li, J., and Przeslawski, R. 2011. A geochemical characterization of deep-sea floor sediments of the northern Lord Howe Rise. Deep Sea Research II 58: 909-921
-
The Casey shallow-water near-shore seabed mapping survey (survey number GA-0348) was conducted as collaboration between Geoscience Australia (GA, Department of Science and Industry), the Royal Australian Navy (RAN, Department of Defence) and the Australian Antarctic Division (AAD, Department of the Environment). The survey was conducted as part of the ongoing AAD program Hydrographic Surveying and Bathymetric Data Acquisition (AAD 3326) and complements a previous charting survey to the Casey region undertaken by RAN and AAD (using the RAN vessel ASV Wyatt Earp) in 2013/14 (also conducted under AAD 3326). The purpose of the survey was to acquire geophysical, geological and biological data from the seabed environment in the shallow (<250 m) coastal waters adjacent to Casey station. The survey acquisition phase formed the main work program for the Antarctic Geoscience Program and Advice activity as part of the Marine Biodiversity and Antarctic Geoscience (MBAG) Section at Geoscience Australia during 2014/15. The shallow water marine environment around Casey station, East Antarctica, is a high use area in the Australian Antarctic Territory, and is frequently visited by the RSV Aurora Australis and smaller vessels conducting scientific research in the area, yet bathymetry data in the area is limited. Additionally, a long-term dive program has revealed the marine habitats in the area host globally significant levels of biodiversity, but this knowledge is geographically restricted in scope (i.e. shallow depths, close to shore). This biodiversity faces pressures from human activities and climate change, yet extensive knowledge gaps remain, limiting efforts to conserve and manage it effectively.
-
Map showing Australia's Maritime Jurisdiction off Northern Australia. Updated in June 2014 from "Australia's Maritime Jurisdiction off Northern Australia" (GeoCat 70183) to conform with "Australian Maritime Boundaries 2014" data by Geoscience Australia. This includes areas contiguous to the north of the continent and as far west as Christmas Island, but excludes areas around Cocos (Keeling) Islands and areas west of Christmas Island. One of the 27 constituent maps of the "Australia's Maritime Jurisdiction Map Series" (GeoCat 71789). Depicting Australia's continental shelf as proclaimed in the "Seas and Submerged Lands (Limits of Continental Shelf) Proclamation 2012" established under the "Seas and Submerged Lands Act 1973". Background bathymetry image is derived from a combination of the 2009 9 arc second bathymetry and topographic grid by Geoscience Australia and a grid by W.H.F. Smith and D.T. Sandwell, 1997. Background land imagery derived from Blue Marble, NASA's Earth Observatory. 2800mm x 1050mm (for 42" plotter) sized .pdf downloadable from the web.
-
High-resolution marine sonar swath mapping, covering an area of ca. 33 km2 in the vicinity of the Windmill Islands (67° S, 110° E), Wilkes Land, east Antarctica, permits visualisation and description of the near-shore geomorphology of the seafloor environment in unprecedented detail and provides invaluable insight into the ice-sheet history of the region. Mesoproterozoic metamorphic basement exhibits prominent sets of parallel northwest-trending linear fault sets that probably formed during fragmentation of eastern Gondwana during the Mesozoic. The fault systems appear to control regional coastal physiographic features and have, in places, been preferentially eroded and exploited by subsequent glacial activity. Possibly the earliest formed glacially-derived geomorphological elements are networks of sub-glacial meltwater channels which are preserved on bedrock platforms and ridges. Subtle glacial lineations and streamlined landforms record evidence of the westward expansion of the grounded, Law Dome ice sheet margin, probably during the late Pleistocene Last Glacial Maximum, the direction of which coincides with glacial striae on onshore crystalline bedrock outcrops. The most striking glacial geomorphological features are sets of arcuate ridges confined mostly within glacially excavated `U-shaped valleys, exploiting and developed along bedrock fault sets. These ridge sets are interpreted as `push moraines or grounding zone features, formed during episodic retreat of highly channelised, topographically controlled ice-streams following ice surging, possibly in response to local environmental forcing during the mid-late Holocene. Minor post-glacial marine sedimentation is preserved in several small (1 km2) `isolated marine basins with shallow seaward sills.
-
In May 2013, Geoscience Australia, in collaboration with the Australian Institute of Marine Science, undertook a marine survey of the Leveque Shelf (survey number SOL5754/GA0340), a sub-basin of the Browse Basin. This survey provides seabed and shallow geological information to support an assessment of the CO2 storage potential of the Browse sedimentary basin. The basin, located on the Northwest Shelf, Western Australia, was previously identified by the Carbon Storage Taskforce (2009) as potentially suitable for CO2 storage. The survey was undertaken under the Australian Government's National CO2 Infrastructure Plan (NCIP) to help identify sites suitable for the long term storage of CO2 within reasonable distances of major sources of CO2 emissions. The principal aim of the Leveque Shelf marine survey was to look for evidence of any past or current gas or fluid seepage at the seabed, and to determine whether these features are related to structures (e.g. faults) in the Leveque Shelf area that may extend to the seabed. The survey also mapped seabed habitats and biota to provide information on communities and biophysical features that may be associated with seepage. This research, combined with deeper geological studies undertaken concurrently, addresses key questions on the potential for containment of CO2 in the basin's proposed CO2 storage unit, i.e. the basal sedimentary section (Late Jurassic and Early Cretaceous), and the regional integrity of the Heyward Formation (the seal unit overlying the main reservoir). The survey collected one hundred and eleven seabed sediment samples that were analysed for their grain size, textural composition and carbonate content. This dataset includes the results of grain size analysis measured by laser diffractometer.
-
Geoscience Australia marine reconnaissance survey TAN0713 to the Lord Howe Rise offshore eastern Australia was completed as part of the Federal Government's Offshore Energy Security Program between 7 October and 22 November 2007 using the New Zealand Government's research vessel Tangaroa. The survey was designed to sample key, deep-sea environments on the east Australian margin (a relatively poorly-studied shelf region in terms of sedimentology and benthic habitats) to better define the Capel and Faust basins, which are two major sedimentary basins beneath the Lord Howe Rise. Samples recovered on the survey contribute to a better understanding of the geology of the basins and assist with an appraisal of their petroleum potential. They also add to the inventory of baseline data on deep-sea sediments in Australia. The principal scientific objectives of the survey were to: (1) characterise the physical properties of the seabed associated with the Capel and Faust basins and Gifford Guyot; (2) investigate the geological history of the Capel and Faust basins from a geophysical and geological perspective; and (3) characterise the abiotic and biotic relationships on an offshore submerged plateau, a seamount, and locations where fluid escape features were evident. This dataset comprises chlorin indices measured on seabed sediments (0-2 cm). Some relevant publications which pertain to these datasets include: 1. Heap, A.D., Hughes, M., Anderson, T., Nichol, S., Hashimoto, T., Daniell, J., Przeslawski, R., Payne, D., Radke, L., and Shipboard Party, (2009). Seabed Environments and Subsurface Geology of the Capel and Faust basins and Gifford Guyot, Eastern Australia - post survey report. Geoscience Australia, Record 2009/22, 166pp. 2. Radke, L.C. Heap, A.D., Douglas, G., Nichol, S., Trafford, J., Li, J., and Przeslawski, R. 2011. A geochemical characterization of deep-sea floor sediments of the northern Lord Howe Rise. Deep Sea Research II 58: 909-921
-
Geoscience Australia marine reconnaissance survey TAN0713 to the Lord Howe Rise offshore eastern Australia was completed as part of the Federal Government's Offshore Energy Security Program between 7 October and 22 November 2007 using the New Zealand Government's research vessel Tangaroa. The survey was designed to sample key, deep-sea environments on the east Australian margin (a relatively poorly-studied shelf region in terms of sedimentology and benthic habitats) to better define the Capel and Faust basins, which are two major sedimentary basins beneath the Lord Howe Rise. Samples recovered on the survey contribute to a better understanding of the geology of the basins and assist with an appraisal of their petroleum potential. They also add to the inventory of baseline data on deep-sea sediments in Australia. The principal scientific objectives of the survey were to: (1) characterise the physical properties of the seabed associated with the Capel and Faust basins and Gifford Guyot; (2) investigate the geological history of the Capel and Faust basins from a geophysical and geological perspective; and (3) characterise the abiotic and biotic relationships on an offshore submerged plateau, a seamount, and locations where fluid escape features were evident. This dataset comprises Fe, Co, Cd, Cu, Zn, Ni and Mn concentrations after extraction of seabed sediments in cold, dilute HCl. Some relevant publications which pertain to these datasets include: 1. Heap, A.D., Hughes, M., Anderson, T., Nichol, S., Hashimoto, T., Daniell, J., Przeslawski, R., Payne, D., Radke, L., and Shipboard Party, (2009). Seabed Environments and Subsurface Geology of the Capel and Faust basins and Gifford Guyot, Eastern Australia - post survey report. Geoscience Australia, Record 2009/22, 166pp. 2. Radke, L.C. Heap, A.D., Douglas, G., Nichol, S., Trafford, J., Li, J., and Przeslawski, R. 2011. A geochemical characterization of deep-sea floor sediments of the northern Lord Howe Rise. Deep Sea Research II 58: 909-921
-
Map showing all of Australia's Maritime Jurisdiction north of approx 25°S. Updated in June 2014 from "Australia's Maritime Jurisdiction North of 25°S" (GeoCat 71985) to conform with "Australian Maritime Boundaries 2014" data by Geoscience Australia. This includes areas around Cocos (Keeling) Islands and areas around Christmas Island as well as those contiguous to the continent in the north. Included as one of the now 28 constituent maps of the "Australia's Maritime Jurisdiction Map Series" (GeoCat 71789). Depicting Australia's continental shelf as proclaimed in the "Seas and Submerged Lands (Limits of Continental Shelf) Proclamation 2012" established under the "Seas and Submerged Lands Act 1973". Background bathymetry image is derived from a combination of the 2009 9 arc second bathymetry and topographic grid by Geoscience Australia and a grid by W.H.F. Smith and D.T. Sandwell, 1997. Background land imagery derived from Blue Marble, NASA's Earth Observatory. 3277mm x 1050mm (for 42" plotter) sized .pdf downloadable from the web.
-
The Timor Sea and its tropical marine environment support significant and growing economic activity including oil and gas exploration. To reduce uncertainty in decision making regarding the sustainable use and ongoing protection of these marine resources, environmental managers and resource users require sound scientific information on the composition and stability of seabed environments and their biological assemblages. Surveys SOL4934 and SOL5117 to the eastern Joseph Bonaparte Gulf were undertaken in August and September 2009 and July and August 2010 respectively, in collaboration with the Australian Institute of Marine Science, with research collaborations from the RAN Australian Hydrographic Office, the Geological Survey of Canada and the Museum and Art Gallery of the Northern Territory. The purpose of these surveys were to develop biophysical maps, and deliver data and information products pertaining to complex seabed environment of the Van Diemen Rise and identify potential geohazards and unique, sensitive environments that relate to offshore infrastructure. This dataset comprises total chlorin concentrations and chlorin indices in the upper 2cm of seabed sediments. Some relevant publications are listed below: 1. Heap, A.D., Przeslawski, R., Radke, L., Trafford, J., Battershill, C. and Shipboard Party. 2010. Seabed environments of the eastern Joseph Bonaparte Gulf, Northern Australia: SOL4934 Post Survey Report. Geoscience Australia Record 2010/09, pp.81. 2. Anderson, T.J., Nichol, S., Radke, L., Heap, A.D., Battershill, C., Hughes, M., Siwabessy, P.J., Barrie, V., Alvarez de Glasby, B., Tran, M., Daniell, J. & Shipboard Party, 2011b. Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia: GA0325/Sol5117 - Post-Survey Report. Geoscience Australia, Record 2011/08, 58pp. 3. Radke, L.C., Li, J., Douglas, G., Przeslawski, R., Nichol, S, Siwabessy, J., Huang, Z., Trafford, J., Watson, T. and Whiteway, T. Characterising sediments of a tropical sediment-starved continental shelf using cluster analysis of physical and geochemical variables. Environmental Chemistry, in press