From 1 - 10 / 109
  • This abstract is to be submitted for the Great Artesian Basin Coordinating Committee Researcher's Forum on 27th-28th of March 2013, as part of the Great Artesian Basin Water Resource Assessment launch at the event.

  • Coastal aquifers are vulnerable to seawater intrusion, which is a significant issue in Australia. Geoscience Australia and the Nation Centre of Groundwater Research and Training undertook an assessment of Australia's vulnerability to seawater intrusion. The assessment utilised multiple approaches, including a vulnerability factor analysis; typological analysis; mathematical analysis; qualitative and quantitative analysis; and future land surface inundation and population growth analysis. This is presented as an abstract for the 2013 IAH Congress.

  • Hydrogeological assessment of the Maryborough Basin, submitted as an abstract for the 2013 IAH Congress.

  • The structural evolution of the South Nicholson region is not well understood, hindering full appraisal of the resource potential across the region. Here, we outline new insights from a recent deep-reflection seismic survey, collected as part of the Australian Government’s Exploring for the Future initiative. The new seismic profiles, and new field observations and geochronology, indicate that the South Nicholson region was characterised by episodic development of a series of ENE-trending half grabens. These graben structures experienced two major episodes of extension, at ca. 1725 Ma and ca. 1640 Ma, broadly correlating with extensional events identified from the Lawn Hill Platform and the Mount Isa Province to the east. Southward stratal thickening of both Calvert and Isa Superbasin sequences (Paleoproterozoic Carrara Range and McNamara groups, respectively) into north-dipping bounding faults is consistent with syndepositional extension during half graben formation. Subsequent basin inversion, and reactivation of the half graben bounding faults as south-verging thrusts, appears to have been episodic. The observed geometry and offset are interpreted as the cumulative effect of multiple tectonic events, including the Isan Orogeny, with thrust movement on faults occurring until at least the Paleozoic Alice Springs Orogeny. <b>Citation:</b> Carson, C.J.. Henson, P.A., Doublier, M.P., Williams, B., Simmons, J., Hutton, L. and Close, D., 2020. Structural evolution of the South Nicholson region: insight from the 2017 L210 reflection seismic survey. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The Petrel Sub-basin CO2 Storage Study data package includes the datasets used for the study located in the Petrel Sub-basin, Bonaparte Basin, offshore Northern Territory. The datasets supports the results of the Geoscience Australia Record 2014/11 and appendices. The study provides an evaluation of the CO2 geological storage potential of the Petrel Sub-basin and was part of the Australian government's National Low Emission Coal Initiative.

  • This report was compiled and written to summarise the four-year Palaeovalley Groundwater Project which was led by Geoscience Australia from 2008 to 2012. This project was funded by the National Water Commission's Raising National Water Standards Program, and was supported through collaboration with jurisdictional governments in Western Australia, South Australia and the Northern Territory. The summary report was published under the National Water Commission's 'Waterlines' series. This document is supported by related publications such as the palaeovalley groundwater literature review, the WASANT Palaeovalley Map and associated datasets, and four stand-alone GA Records that outline the detailed work undertaken at several palaeovalley demonstration sites in WA, SA and the NT. Palaeovalley aquifers are relied upon in outback Australia by many groundwater users and help underpin the economic, social and environmental fabric of this vast region. ‘Water for Australia’s arid zone – Identifying and assessing Australia’s palaeovalley groundwater resources’ (the Palaeovalley Groundwater Project) investigated palaeovalleys across arid and semi-arid parts of Western Australia (WA), South Australia (SA) and the Northern Territory (NT). The project aimed to (a) generate new information about palaeovalley aquifers, (b) improve our understanding of palaeovalley groundwater resources, and (c) evaluate methods available to identify and assess these systems.

  • NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents the Pb isotopes analyses conducted on 22 selected whole rock samples of NDI Carrara 1 undertaken by University of Melbourne.

  • The Source Rock and Fluids Atlas delivery and publication services provide up-to-date information on petroleum (organic) geochemical and geological data from Geoscience Australia's Organic Geochemistry Database (ORGCHEM). The sample data provides the spatial distribution of petroleum source rocks and their derived fluids (natural gas and crude oil) from boreholes and field sites in onshore and offshore Australian basins. The services provide characterisation of source rocks through the visualisation of Pyrolysis, Organic Petrology (Maceral Groups, Maceral Reflectance) and Organoclast Maturity data. The services also provide molecular and isotopic characterisation of source rocks and petroleum through the visualisation of Bulk, Whole Oil GC, Gas, Compound-Specific Isotopic Analyses (CSIA) and Gas Chromatography-Mass Spectrometry (GCMS) data tables. Interpretation of these data enables the characterisation of petroleum source rocks and identification of their derived petroleum fluids that comprise two key elements of petroleum systems analysis. The composition of petroleum determines whether or not it can be an economic commodity and if other processes (e.g. CO2 removal and sequestration; cryogenic liquefaction of LNG) are required for development.

  • Geoscience Australia has undertaken a regional seismic mapping study that extends into the frontier deep-water region of the offshore Otway Basin. This work builds on seismic mapping and petroleum systems modelling published in the 2021 Otway Basin Regional Study. Seismic interpretation spans over 18 000 line-km of new and reprocessed data collected in the 2020 Otway Basin seismic program and over 40 000 line-km of legacy 2D seismic data. Fault mapping has resulted in refinement and reinterpretation of regional structural elements, particularly in the deep-water areas. Structure surfaces and isochron maps highlight Shipwreck (Turonian–Santonian) and Sherbrook (Campanian–Maastrichtian) supersequence depocentres across the deep-water part of the basin.

  • As part of the Exploring For the Future program 2022 showcase, Geoscience Australia (GA) in collaboration with the Australian Institute of Geoscientists held an Airborne Electromagnetics (AEM) workshop in Perth on 11th August 2022. The workshop comprised the following: - An introduction to GA's 20 km spaced continent-wide AusAEM program, by Karol Czarnota - How the Western Australia government has successfully used 20 km spaced AEM data, by Klaus Gessner - An introduction to AEM, surveying, and quality control given by Yusen Ley-Cooper - An introduction to inverse theory presented by Anandaroop Ray - Hands-on AEM modeling and inversion using HiQGA.jl by Anandaroop Ray - Integrating geophysics and geology in subsurface interpretation, by Sebastian Wong - Avoiding the 10 most common pitfalls in AEM interpretation according to Neil Symington YouTube video from the workshop, as well as data and code to follow along with the videos can be found on GA's GitHub at <a href=https://github.com/GeoscienceAustralia/HiQGA.jl/tree/workshop><u>this link.</u></a>