Basin
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This Carnarvon Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Carnarvon Basin is a large sedimentary basin covering the western and north-western coast of Western Australia, stretching over 1,000 km from Geraldton to Karratha. It is predominantly offshore, with over 80% of the basin located in water depths of up to 4,500 m. The basin is elongated north to south and connects to the Perth Basin in the south and the offshore Canning Basin in the north-east. It is underlain by Precambrian crystalline basement rocks. The Carnarvon Basin consists of two distinct parts. The southern portion comprises onshore sub-basins with mainly Paleozoic sedimentary rocks extending up to 300 km inland, while the northern section consists of offshore sub-basins containing Mesozoic, Cenozoic, and Paleozoic sequences. The geological evolution of the Southern Carnarvon Basin was shaped by multiple extensional episodes related to the breakup of Gondwana and reactivation of Archean and Proterozoic structures. The collision between Australia and Eurasia in the Mid-Miocene caused significant fault reactivation and inversion. The onshore region experienced arid conditions, leading to the formation of calcrete, followed by alluvial and eolian deposition and continued calcareous deposition offshore. The Northern Carnarvon Basin contains up to 15,000 m of sedimentary infill, primarily composed of siliciclastic deltaic to marine sediments from the Triassic to Early Cretaceous and shelf carbonates from the Mid-Cretaceous to Cenozoic. The basin is a significant hydrocarbon province, with most of the resources found within Upper Triassic, Jurassic, and Lower Cretaceous sandstone reservoirs. The basin's development occurred during four successive periods of extension and thermal subsidence, resulting in the formation of various sub-basins and structural highs. Overall, the Carnarvon Basin is a geologically complex region with a rich sedimentary history and significant hydrocarbon resources. Exploration drilling has been ongoing since 1953, with numerous wells drilled to unlock its hydrocarbon potential.
-
The Houtman Sub-basin geophysical modelling study is an integrated geological and geophysical interpretation of the GA-349 seismic survey. The key aims for the study were to improve the understanding of the crustal architecture of the Houtman Sub-basin and the distribution and thickness of magmatic rocks. The Houtman Sub-basin is a largely unexplored offshore depocentre in the northern Perth Basin on the western margin of Australia. It formed during two separate rifting episodes (Early- to Mid-Permian, Early Jurassic to Early Cretaceous) and may contain up to 19 km of sediment. The northern Houtman Sub-basin contains extensive breakup-related sill and dyke complexes, related to both the adjacent volcanic province of the Wallaby Plateau and the Wallaby Zenith Transform Margin (WZTM). New 2D seismic reflection data obtained in 2014/15 (GA-349) is being used to re-assess the petroleum prospectivity of this frontier basin to underpin the possible future release of exploration acreage. A full understanding of petroleum prospectivity requires a clear picture of sediment thickness, the nature of basement, and the distribution of magmatic rocks, all of which influence the maturation of hydrocarbons and ultimately prospectivity. Geoscience Australia seismic survey (GA-310) and marine sampling survey (GA-2476) conducted in 2008 and 2009 acquired a total of about 26,000 km of new gravity and magnetic data. This new gravity and magnetic data has been integrated and levelled with existing data, both offshore and onshore, to produce unified gravity and magnetic datasets for use in constraining regional tectonics, basin structure and petroleum prospectivity. The purpose of this study is to use potential field modelling to: a) validate seismic interpretation of crustal structure (in depth), including Moho depth and depth to top crystalline basement; b) model density variations within the sedimentary section; c) model density and magnetic susceptibility variations within basement with an interpretation of basement composition (if possible) and; d) investigate the depth, extent and thickness of intrabasinal magmatic rocks identified on seismic data.
-
This Canning Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Canning Basin, characterized by mostly Paleozoic sedimentary rocks with a maximum thickness of over 15,000 m, went through four major depositional phases from Early Ordovician to Early Cretaceous. The basin contains two main depocenters, the Fitzroy Trough-Gregory Sub-basin in the north and the Willara Sub-basin-Kidson Sub-basin in the south. The depositional history includes marine, evaporite, fluvial, deltaic, glacial, and non-marine environments. The basin's evolution began with extension and rapid subsidence in the Early Ordovician, followed by a sag stage with evaporite and playa conditions in the Late Ordovician and Silurian. The Devonian to Early Carboniferous phase involved marine, reef, fluvio-deltaic, and terrestrial sedimentation in the north and marginal marine to terrestrial systems in the south. The Late Carboniferous to mid-Triassic period saw non-marine and marine settings, including glacial environments. The basin then experienced mid-Jurassic to Early Cretaceous deposition, mainly in deltaic and non-marine environments. Throughout its history, the Canning Basin encountered multiple tectonic phases, including extension, compression, inversion, and wrench movements, leading to various depositional settings and sediment types. Around 250 petroleum wells have been drilled in the basin, with production mainly from Permo-Carboniferous sandstones and Devonian carbonates. Several proven and untested plays, such as draped bioherms, anticlinal closures, and fault blocks, provide potential for hydrocarbon exploration. Late Carboniferous and Jurassic mafic sills intersected in wells indicate additional geological complexity. Additionally, some areas of the Canning Basin are considered suitable for CO2 storage.
-
This Galilee Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. This Galilee Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Galilee Basin is a large intracratonic sedimentary basin in central Queensland. The basin contains a variably thick sequence of Late Carboniferous to Middle Triassic clastic sedimentary rocks dominated by laterally extensive sandstone, mudstone and coal. These rocks were mostly deposited in non-marine environments (rivers, swamps and lakes), although there is minor evidence for marginal marine settings such as deltas and estuaries. Sedimentation did not occur continuously across the approximately 90 million year history of basin development, and intervals of episodic compression, uplift and erosion were marked by distinct depositional breaks. Over much of the surface area of the Galilee Basin the main aquifers targeted for groundwater extraction occur in the younger rocks and sediments that overlie the deeper sequence of the Galilee Basin. The primary aquifers that supply groundwater in this region are those of the Eromanga Basin, as well as more localised deposits of Cenozoic alluvium. However, in the central-east and north-east of the Galilee Basin, the Carboniferous to Triassic rocks occur at or close to surface and several aquifer units supply significant volumes of groundwater to support pastoral and town water supplies, as well as being the water source for several spring complexes. The three main groundwater systems identified in the Galilee Basin occur in the 1. Clematis Group aquifer, 2. partial aquifer of the upper Permian coal measures (including the Betts Creek beds and Colinlea Sandstone), and 3. aquifers of the basal Joe Joe Group. The main hydrogeological units that confine regional groundwater flow in the Galilee Basin are (from upper- to lower-most) the Moolayember Formation, Rewan Formation, Jochmus Formation and Jericho Formation. However, some bores may tap local groundwater resources within these regional aquitards in areas where they outcrop or occur close to surface. Such areas of localised partial aquifer potential may be due in part to enhanced groundwater storage due to weathering and fracturing.
-
This Clarence-Moreton Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The formation of the Clarence-Moreton Basin initiated during the Middle Triassic due to tectonic extension. This was followed by a prolonged period of thermal cooling and relaxation throughout the Late Triassic to the Cretaceous. Deposition of a non-marine sedimentary succession occurred during this time, with the Clarence-Moreton Basin now estimated to contain a sedimentary thickness of up to 4000 m. There were three main depositional centres within the basin, and these are known as the Cecil Plain Sub-basin, Laidley Sub-basin and Logan Sub-basin. The Clarence-Moreton Basin sediments were originally deposited in non-marine environments by predominantly northward flowing rivers in a relatively humid climate. The sedimentary sequences are dominated by a mixed assemblage of sandstone, siltstone, mudstone, conglomerate and coal. Changing environmental conditions due to various tectonic events resulted in deposition of interbedded sequences of fluvial, paludal (swamp) and lacustrine deposits. Within the Clarence-Moreton Basin, coal has been mined primarily from the Jurassic Walloon Coal Measures, including for the existing mines at Commodore and New Acland. However, coal deposits also occur in other units, such as the Grafton Formation, Orara Formation, Bundamba Group, Ipswich Coal Measures, and Nymboida Coal Measures. Overlying the Clarence-Moreton Basin in various locations are Paleogene and Neogene volcanic rocks, such as the Main Range Volcanics and Lamington Volcanics. The thickness of these volcanic rocks is typically several hundred metres, although the maximum thickness of the Main Range Volcanics is about 900 m. Quaternary sediments including alluvial, colluvial and coastal deposits also occur in places above the older rocks of the Clarence-Moreton Basin.
-
This Amadeus Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Amadeus Basin is a sedimentary basin in central Australia that spans from the Neoproterozoic to Late Devonian, potentially Early Carboniferous, periods. It contains clastic, carbonate, and evaporitic sedimentary rocks, with a total thickness of 6,000 m to 14,000 m. The Neoproterozoic section alone is up to 3,000 m thick and is divided into four super-sequences separated by major unconformities. The basin is an active hydrocarbon province, with ongoing oil and gas production and the potential for further discoveries. Several key petroleum source rock units have been identified in the Amadeus Basin. The Gillen Formation, found in the northeast, consists of marine black shale, dolostone, sandstone, and evaporite, reaching a maximum thickness of 850 m. The Loves Creek Formation comprises deep water grainstone and mudstone overlain by stromatolite-bearing grainstone and dolostone, with a thickness of up to 500 m. The Johnnys Creek Formation is a unit composed of red bed and dolomitic limestone or dolostone, along with siltstone and sandstone, up to 400 m thick. The Inindia beds consist of sandstone, siltstone, chert, jasper, tillite, and dolostone, with a maximum thickness of 2,000 m and were deposited in shallow marine conditions. The Aralka Formation is a siltstone and shale unit with two members, the Ringwood Member and the Limbla Member, reaching a thickness of up to 1,000 m. The Pertatataka Formation is a turbiditic red and green siltstone and shale unit, along with minor feldspathic sandstone, deposited in a deep marine or marine shelf environment, typically about 350 m thick but up to 1,400 m thick at certain locations. The Winnall Group is a succession of sandstone and siltstone, with a maximum thickness of 2,134 m. The Chandler Formation is a poorly exposed unit consisting of halite, foetid carbonate mudstone, shale, and siltstone, deposited in a shallow marine environment, with halite deposits reaching thicknesses of 230 m to 450 m. The Giles Creek Dolostone is a carbonate and siltstone unit, with minor sandstone, deposited in a shallow-marine environment. The Horn Valley Siltstone is a thinly bedded shale and siltstone, with nodular limestone and sandy phosphatic and glauconitic interbeds, serving as the primary hydrocarbon source rock in the basin. Lastly, the Stairway Sandstone is 544 m thick and divided into three subunits, consisting of quartzitic sandstone, black shale, siltstone, mudstone, and phosphorites.
-
The Great Artesian Basin (GAB) is one of Australia's most significant hydrogeological entities covering more than 1.7 million square kilometres, underlying parts of Queensland, New South Wales, South Australia and the Northern Territory. The GAB contains a vast volume of underground water (estimated at 64,900 million megalitres) and is the largest groundwater basin in Australia. Groundwater resources in the GAB are used to support the pastoral, agricultural, and resource sectors as well as supplying water to inland communities. Properly managing these groundwater resources, often for competing interests, requires an understanding of how the groundwater system works at a regional scale. This atlas presents a compilation of maps documenting some of the key regional geological, hydrogeological and hydrochemical aspects of the GAB. It provides insights into the current understanding of the regional geometry and physical characteristics of the rocks and water contained within this vast groundwater basin and baseline information against which future changes can be assessed.
-
Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood. Geoscience Australia (in collaboration with the Northern Territory Geological Survey) acquired around 700 line-kms of deep crustal reflection seismic data across northwest Northern Territory encompassing not only the frontier Birrindudu Basin but adjacent highly prospective regions, such as the Tanami. This ecat record releases the final survey route shapefiles, noting that some segments were not acquired due to site access restrictions. Seismic field data will be published in the near future release following completion of in-house QA/QC protocols
-
This Bowen Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Bowen Basin is part of the Sydney–Gunnedah–Bowen basin system and contains up to 10,000 m of continental and shallow marine sedimentary rocks, including substantial deposits of black coal. The basin's evolution has been influenced by tectonic processes initiated by the New England Orogen, commencing with a phase of mechanical extension, and later evolving to a back-arc setting associated with a convergent plate margin. Three main phases of basin development have been identified; 1) Early Permian: Characterized by mechanical extension, half-graben development, thick volcanic units and fluvio-lacustrine sediments and coal deposits. 2) Mid Permian: A thermal relaxation event led to the deposition of marine and fluvio-deltaic sediments, ending with a regional unconformity. 3) Late Permian and Triassic: Foreland loading created a foreland basin setting with various depositional environments and sediment types, including included fluvial, marginal marine, deltaic and marine sediments along with some coal deposits in the late Permian, and fluvial and lacustrine sediments in the Triassic. Late Permian peat swamps led to the formation of extensive coal seams dominating the Blackwater Group. In the Triassic, fluvial and lacustrine deposition associated with foreland loading formed the Rewan Formation, Clematis Sandstone Group, and Moolayember Formation. The basin is a significant coal-bearing region with over 100 hydrocarbon accumulations, of which about one third are producing fields. The Surat Basin overlies the southern Bowen Basin and contains varied sedimentary assemblages hosting regional-scale aquifer systems. Cenozoic cover to the Bowen Basin includes a variety of sedimentary and volcanic rock units. Palaeogene and Neogene sediments mainly form discontinuous units across the basin. Three of these units are associated with small eponymous Cenozoic basins (the Duaringa, Emerald and Biloela basins). Unnamed sedimentary cover includes Quaternary alluvium, colluvium, lacustrine and estuarine deposits; Palaeogene-Neogene alluvium, sand plains, and duricrusts. There are also various Cenozoic intraplate volcanics across the Bowen Basin, including central volcanic- and lava-field provinces.
-
This Surat Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Surat Basin is a sedimentary basin with approximately 2500 m of clastic fluvial, estuarine, coastal plain, and shallow marine sedimentary rocks, including sandstone, siltstone, mudstone, and coal. Deposition occurred over six cycles from the Early Jurassic to the Cretaceous, influenced by eustatic sea-level changes. Each cycle lasted 10 to 20 million years, ending around the mid-Cretaceous. Bounded by the Auburn Arch to the northeast and the New England Orogen to the southeast, it connects to the Clarence-Moreton Basin through the Kumbarilla Ridge. The Central Fold Belt forms its southern edge, while Cenozoic uplift caused erosion in the north. The basin's architecture is influenced by pre-existing faults and folds in the underlying Bowen Basin and the nature of the basement rocks from underlying orogenic complexes. Notable features include the north-trending Mimosa Syncline and Boomi Trough, overlying the deeper Taroom Trough of the Bowen Basin and extending southwards. The Surat Basin overlies older Permian to Triassic sedimentary basins like the Bowen and Gunnedah Basins, unconformably resting on various older basement rock terranes, such as the Lachlan Orogen, New England Orogen, and Thomson Orogen. Several Palaeozoic basement highs mark its boundaries, including the Eulo-Nebine Ridge in the west and the Kumbarilla Ridge in the east. Paleogene to Neogene sediments, like those from the Glendower Formation, cover parts of the Surat Basin. Remnant pediments and Cenozoic palaeovalleys incised into the basin have added complexity to its geological history and may influence aquifer connections. Overall, the Surat Basin's geological history is characterized by millions of years of sedimentation, tectonic activity, and erosion, contributing to its geological diversity and economic significance as a source of natural resources, including coal and natural gas.