Geochronology
Type of resources
Keywords
Publication year
Service types
Topics
-
Take a journey through time! This app will guide you along the Geoscience Australia TimeWalk, leading you on a 1.1 kilometre journey through the Earth's 4600 million year (Ma) history. The TimeWalk is a physical representation of the evolution of the Earth from its formation to the present day. Large rock samples collected from around Australia are on display along the TimeWalk, at designated locations that reflect their age of formation. Each rock has a story to tell, with geological, economic, environmental and/or cultural significance. Use this app to read, hear and learn all about the significance of these rocks and their relevance to Earth's history. Plus, discover other facts and events of geological history along the way! The TimeWalk is located in the landscaped gardens at the front of the Geoscience Australia building, at the corner of Jerrabomberra Ave and Hindmarsh Drive, Canberra, Australia. Record removed from external publication 26 November 2021. App has been disabled on the App store as it doesn't currently work. https://itunes.apple.com/us/app/geoscience-australia-time/id899855813?ls=1&mt=8
-
This report presents new Sensitive High Resolution Ion Micro Probe (SHRIMP) U-Pb geochronological results obtained during the Geological Survey of Queensland-Geoscience Australia (GSQ-GA) Geochronology project between July 2010 and June 2012. A total of 24 samples were analysed, in support of ongoing regional geoscientific investigations and mapping programs by the GSQ. This report documents detailed results for each sample individually, encompassing sample location and geological context, a description of the target mineral for geochronology, the relevant analytical data, and a brief geochronological interpretation. A summary of all results from this study is presented in Table i, and the sample locations are shown in Figure i. The analysed samples are from regions extending from the Eulo Ridge, an exposed part of the mainly concealed Thomson Orogen in south-western Queensland, to the Charters Towers and Greenvale regions in the north and the Mount Isa region in the north-west (Figure i). The work was carried out to provide an improved time framework for updated interpretations of the geology of selected parts of the state.
-
This Record presents new zircon U-Pb geochronological data, obtained using a Sensitive High Resolution Ion MicroProbe (SHRIMP), and thin section descriptions for nine samples of plutonic and volcanic rocks of the New England Orogen, New South Wales. The work was carried out under the auspices of the National Geoscience Accord, as a component of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) during the reporting periods 2010/11 and 2011/12.
-
This Record presents new U–Pb geochronological data, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), from 43 samples of predominantly igneous rocks collected from the East Riverina region of the central Lachlan Orogen, New South Wales. The results presented herein correspond to the reporting period July 2016–June 2020. This work is part of an ongoing Geochronology Project, conducted by the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) under a National Collaborative Framework agreement, to better understand the geological evolution and mineral prospectivity of the central Lachlan Orogen in southern NSW (Bodorkos et al., 2013; 2015; 2016, 2018; Waltenberg et al., 2019).
-
The Precambrian Pine Creek Orogen and Arnhem Province represent two of the oldest basement terrains in northern Australia and are often considered to be devoid of major tectonic or deformational activity since the cessation of regional metamorphism in the Paleoproterozoic. A major caveat in the current hypothesis of long lived structural inactivity is the absence of published low temperature thermochronological data and thermal history models for this area. Here we report the first apatite U–Pb, fission track and (U–Th–Sm)/He data for igneous samples from both the Pine Creek Orogen and Arnhem Province, complemented with apatite geochemistry data acquired by electron microprobe and laser ablation mass spectrometry methods, and present detailed multi-kinetic low temperature thermal history models. Low-temperature thermal history models for the Pine Creek Orogen and Arnhem Province reveal a distinct phase of denudation coeval with the Paleozoic Alice Springs Orogeny, suggesting that this orogenic event impacted a larger area of the Australian crust than previously perceived. Minor localised Mesozoic thermal perturbations proximal to the Pine Creek Shear-Zone record evidence for Mesozoic reactivation contemporaneous with modelled mantle driven subsidence and the onset of sedimentation in the Money Shoal Basin, while the Arnhem Province samples demonstrate no evidence of Mesozoic thermal perturbations. <b>Citation:</b> Angus L. Nixon, Stijn Glorie, Alan S. Collins, Jo A. Whelan, Barry L. Reno, Martin Danišík, Benjamin P. Wade, Geoff Fraser; Footprints of the Alice Springs Orogeny preserved in far northern Australia: an application of multi-kinetic thermochronology in the Pine Creek Orogen and Arnhem Province. <i>Journal of the Geological Society</i> 2020;; 178 (2): jgs2020–173. doi: https://doi.org/10.1144/jgs2020-173
-
This Record presents data collected in April 2019 as part of the ongoing Northern Territory Geological Survey–Geoscience Australia (NTGS–GA) SHRIMP geochronology project under the National Collaborative Framework (NCF) agreement and Geoscience Australia's Exploring for the Future Program. Two new U–Pb SHRIMP zircon geochronological results derived from two samples of meta-igneous and metasedimentary rocks from the Aileron and Irindina provinces in JINKA and DNEIPER (HUCKITTA) in the Northern Territory are presented herein. <b>Bibliographic Reference:</b> Kositcin N, and Reno BL, 2020. Summary of results. Joint NTGS–GA geochronology project: Aileron and Irindina provinces, Jinka and Dneiper 1:100 000 mapsheets, 2019. <i>Northern Territory Geological Survey</i>, <b>Record 2020-001</b>.
-
This Record presents new zircon U Pb geochronological data obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP) from rocks sampled within the Wau 1:100 000 map sheet area, which is located on the Papuan Peninsula in eastern Papua New Guinea. Exposure in the Wau Bulolo region comprises low-grade Mesozoic metasedimentary rocks of the Owen Stanley Metamorphics, which are intruded by the mid-Miocene Morobe Granodiorite batholith, and overlain by Pliocene sedimentary and volcanic rocks of the Wau Basin. The map sheet area contains the Morobe Goldfield (from which more than 3.2 Moz of alluvial gold has been mined) and the Hidden Valley epithermal Au-Ag deposit (which has a total gold resource in excess of 3 Moz), and lies about 70 km south-southeast of the giant mid-Miocene Wafi-Golpu porphyry Cu-Au deposit (>26 Moz Au and 9 Mt Cu). The geochronological data in this Record were generated as part of a collaborative project between Geoscience Australia (GA) and the Mineral Resources Authority (MRA) of Papua New Guinea in 2012. Four samples were analysed: two from the Pliocene Bulolo Volcanics and one from the Miocene Morobe Granodiorite to establish precise, accurate magmatic crystallisation ages, and one metasandstone from the Mesozoic Owen Stanley Metamorphics for detrital zircon provenance analysis. Sample locations, descriptions, and U Pb SHRIMP results are summarised in Table 1.1.
-
The Congararra 2 borehole was drilled approximately 73 km NNW of Bourke, NSW/ The borehole was designed to test aeromagnetic anomalies in the basement rocks, test the electrical conductivity properties of cover and basement rocks to validate airborne electromagnetic (AEM) data, and to test pre-drilling geophysical cover thickness estimates.
-
The Paleo- to Mesoproterozoic McArthur Basin and Mount Isa region of northern Australia (Figure 1) is richly-endowed with a range of deposit types (e.g., Ahmad et al., 2013; Geological Survey of Queensland, 2011). These include the basin-hosted base metal (Zn-Pb-Ag) deposits of the North Australian Zinc Belt, the richest zinc province in the world (Geological Survey of Queensland, 2011; Huston et al., 2006), as well as Cu (e.g., Mt Isa Copper) and IOCG (e.g., Ernest Henry) deposits (Geological Survey of Queensland, 2011). The giant size of the base metal deposits makes them attractive exploration targets and significant effort has been undertaken in understanding their genesis and setting and developing methodologies and data sets to aid in further discovery. As part of its Exploring for the Future program, Geoscience Australia is acquiring new, and reprocessing old, data sets to provide industry with new exploration tools for these basin-hosted Zn-Pb and Cu deposits, as well as iron-oxide copper-gold deposits. We have adopted a mineral systems approach (e.g., Huston et al., 2016) focussing on regional aspects such as source rocks, locations of mineral deposits, mineralisation haloes and footprints. Increased understanding of these aspects requires knowledge of the background variability of unaltered rocks within the basin. To assist in this we have undertaken a campaign of baseline geochemical studies, with over 800 new samples collected from sedimentary and igneous units of selected parts of the greater McArthur Basin–Mount Isa region. This has allowed us to document temporal and regional background geochemical (and mineralogical) variation within, and between sedimentary and igneous units. The main focus of this work was directed towards aspects of base metal mineralisation; a concurrent GA study (e.g., Jarrett et al., 2019) looking at aspects of hydrocarbon potential was undertaken in parallel. Appeared in Annual Geoscience Exploration Seminar (AGES) Proceedings, Alice Springs, Northern Territory 24-25 March 2020, p. 105
-
This Record contains new zircon U-Pb geochronological data obtained via Sensitive High-Resolution Ion Micro Probe (SHRIMP) from 15 samples of volcanic and plutonic igneous rocks of the Lachlan Orogen, the Thomson Orogen, and the Delamerian Orogen, New South Wales. These data were obtained during the reporting period July 2009-June 2010, under the auspices of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA), which is part of the National Geoscience Accord.