From 1 - 10 / 51
  • This Record contains new zircon U-Pb geochronological data, obtained via Sensitive High-Resolution Ion Micro Probe (SHRIMP), from two samples of metamorphosed felsic igneous rocks of the Proterozoic Pinjarra Orogen (Western Australia), intersected in diamond drillcore at the base of deep petroleum exploration wells penetrating the Paleozoic sedimentary successions of the Perth Basin. In the southern Perth Basin, petroleum exploration well Sue 1 was terminated at depth 3074.2 m, in crystalline basement rocks of the southern Pinjarra Orogen. Abundant zircon from a biotite-bearing felsic orthogneiss at depth 3073.2-3073.7 m yielded a complex array of U-Pb isotopic data, indicative of significant post-crystallisation disturbance of the isotopic system. A Discordia regression fitted to the array yielded an upper intercept date of 1076 ± 35 Ma (all quoted uncertainties are 95% confidence intervals unless specified otherwise) interpreted to represent magmatic crystallisation of the igneous precursor to the orthogneiss, and a lower intercept date of 680 ± 110 Ma which is our best estimate of the age of the tectonothermal event responsible for post-crystallisation disturbance of the U-Pb system. Crust of known Mesoproterozoic age is rare in the southern Pinjarra Orogen: pre-1000 Ma igneous crystallisation ages in the Leeuwin Complex were previously known only from two c. 1090 Ma garnet-bearing orthogneisses at Redgate Beach (Nelson, 1999), 30 km west of Sue 1. All other dated outcrops have revealed Neoproterozoic (780-680 Ma) granitic protoliths reworked by Early Cambrian (540-520 Ma) magmatism, deformation and metamorphism (Nelson, 1996, 2002; Collins, 2003). In the northern Perth Basin, petroleum exploration well Beagle Ridge 10A was terminated at depth 1482 m, in crystalline basement rocks of the northern Pinjarra Orogen. A leucocratic orthogneiss sampled within the interval 1464.0-1467.0 m yielded only sparse zircon, but four of the seven grains analysed yielded a weighted mean 207Pb/206Pb date of 1092 ± 27 Ma, interpreted to represent magmatic crystallisation of the igneous precursor to the orthogneiss. Our data show no evidence for Neoproterozoic U-Pb resetting of the c. 1090 Ma zircons: where present, post-crystallisation isotopic disturbance is predominantly geologically recent. The two newly dated samples are located at opposite ends of the Perth Basin (about 470 km apart), and although the two magmatic crystallisation ages are imprecise, the date of 1092 ± 27 Ma from the Beagle Ridge 10A leucocratic orthogneiss is indistinguishable from the date of 1076 ± 35 Ma from the Sue 1 felsic orthogneiss. Furthermore, both rocks contain inherited zircon of Mesoproterozoic age (1620-1180 Ma in Sue 1; 1290-1210 Ma in Beagle Ridge 10A), indicating the presence of pre-1100 Ma crustal components in their parent magmas. This is consistent with a suite of Paleoproterozoic Sm-Nd model ages determined by Fletcher et al. (1985) on buried Pinjarra Orogen orthogneisses, which span 2.01 ± 0.06 Ga to 1.78 ± 0.04 Ga in the north (near BMR Beagle Ridge 10A), and including a model age of 1.80 ± 0.04 Ga from a sample of granitic gneiss obtained from Sue 1. Fletcher et al. (1985) argued that the consistency of 2.1-1.8 Ga Nd model ages obtained from crystalline basement in drillcore beneath the southern and northern Perth Basin, and from outcrop in the Northampton Complex and Mullingarra Complex of the northern Pinjarra Orogen, indicated a similar or shared crustal evolution. Our new U-Pb zircon data support this model, expanding the known extent of 1100-1050 Ma felsic magmatism in both the southern and northern Pinjarra Orogen, and indicating that Neoproterozoic tectonothermal overprinting appears to be restricted to the Leeuwin Complex, with no corresponding event discernible in the northern Pinjarra Orogen.

  • This Record presents new zircon U-Pb geochronological data, obtained using a Sensitive High Resolution Ion MicroProbe (SHRIMP), and thin section descriptions for four samples of plutonic and sedimentary rocks from the Captains Flat 1:50, 000 special map sheet, Eastern Lachlan Orogen, New South Wales. The work was carried out under the auspices of the National Geoscience Accord, as a component of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) during the reporting periods 2012 and 2013. The four samples (Table 1.1 and Figure 1.1) were collected from CANBERRA (small and large capitals refer to map sheet names in the 1:100 000 and 1:250 000 Topographic Series respectively); one sample from CANBERRA (northcentral CANBERRA), two from MICHELAGO (southcentral CANBERRA) and one from ARALUEN (southcentral CANBERRA).

  • New SHRIMP U-Pb zircon ages from the New England Orogen, New South Wales July 2014-June 2015

  • NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents SHRIMP U-Pb zircon geochronology on 10 volcaniclastic rocks taken from NDI Carrara 1.

  • The fundamental geological framework of the concealed Paleoproterozoic East Tennant area of northern Australia is very poorly understood, despite its relatively thin veneer of Phanerozoic cover and its position along strike from significant Au–Cu–Bi mineralisation of the Tennant Creek mining district within the outcropping Warramunga Province. We present 18 new U–Pb dates, obtained via Sensitive High Resolution Ion Micro Probe (SHRIMP), constraining the geological evolution of predominantly Paleoproterozoic metasedimentary and igneous rocks intersected by 10 stratigraphic holes drilled in the East Tennant area. The oldest rocks identified in the East Tennant area are two metasedimentary units with maximum depositional ages of ca. 1970 Ma and ca. 1895 Ma respectively, plus ca. 1870 Ma metagranitic gneiss. These units, which are unknown in the nearby Murphy Province and outcropping Warramunga Province, underlie widespread metasedimentary rocks of the Alroy Formation, which yield maximum depositional ages of 1873–1864 Ma. While parts of this unit appear to be correlative with the ca. 1860 Ma Warramunga Formation of the Warramunga Province, our data suggest that the bulk of the Alroy Formation in the East Tennant area is slightly older, reflecting widespread sedimentation at ca. 1870 Ma. Throughout the East Tennant area, the Alroy Formation was intruded by voluminous 1854–1845 Ma granites, contemporaneous with similar felsic magmatism in the outcropping Warramunga Province (Tennant Creek Supersuite) and Murphy Province (Nicholson Granite Complex). In contrast with the outcropping Warramunga Province, supracrustal rocks equivalent to the 1845–1810 Ma Ooradidgee Group are rare in the East Tennant area. Detrital zircon data from younger sedimentary successions corroborate seismic evidence that at least some of the thick sedimentary sequences intersected along the southern margin of the recently defined Brunette Downs rift corridor are possible age equivalents of the ca. 1670–1600 Ma Isa Superbasin. Our new results strengthen ca. 1870–1860 Ma stratigraphic and ca. 1850 Ma tectono-magmatic affinities between the East Tennant area, the Murphy Province, and the mineralised Warramunga Province around Tennant Creek, with important implications for mineral prospectivity of the East Tennant area. Appeared in Precambrian Research Volume 383, December 2022.

  • This Record presents new Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb geochronological results for samples collected from the Mount Isa Inlier and covered areas to the east. The Mary Kathleen Domain is the focus of this work and 11 metasedimentary and igneous samples were analysed from across the distribution of the domain. An additional two metasedimentary samples and one igneous sample from drill cores located east of the outcropping Mount Isa Province were also analysed. <b>Bibliographic Reference: </b>Kositcin, N., Purdy, D.J., Bultitude, R.J., Brown, D.D. & Hoy, D. Summary of Results. Joint GSQ–GA Geochronology Project: Mary Kathleen Domain and rocks under younger cover east of the Mount Isa Inlier, 2019–2020. <i>Queensland Geological Record</i><b> 2021/01</b>.

  • This Record presents new Sensitive High Resolution Ion MicroProbe (SHRIMP) U–Pb zircon results obtained under the auspices of the Geological Survey of Queensland–Geoscience Australia (GSQ–GA) National Collaboration Framework (NCF) geochronology project between July 2016 and June 2017. This Record presents results from six newly analysed samples, in support of ongoing regional mapping and geoscientific programs led by GSQ in the Georgetown, Coen and Cairns regions. Three magmatic samples were analysed from unnamed rhyolite dykes within the Georgetown region (Gilberton 1:250 000 sheet SE5416), two samples (one magmatic and one metasedimentary) from the Coen region(Coen SD5408), and one metasedimentary sample from the Cairns region (Innisfail SE5506). A summary of each sample is presented, each containing information on sample location and geological content, geochronology results, as well as a brief geochronological interpretation. <b>Bibliographic Reference:</b> Christopher J. Lewis, Courteney R. Dhnaram, Dominic D. Brown, Robert J. Bultitude, Vladimir A. Lisitsin. Summary of Results. Joint GSQ–GA Geochronology Project: Georgetown, Coen and Cairns regions, 2016–2017. <i>Queensland Geological Record</i><b> 2021/05</b>.

  • This Record presents six previously unpublished U–Pb SHRIMP zircon geochronological results from the Aileron Province in the Northern Territory. The data was collected to investigate the timing of localised and poorly documented granulite facies high-T, low-P metamorphism across isolated outcrops in the central and western Aileron Province. The study was also designed to test the maximum deposition ages of the metasedimentary rocks across this large area, and whether the data are consistent with the samples being high-grade equivalents of the Lander Rock Formation. <b>Bibliographic Reference:</b> Kositcin N, and Scrimgeour IR, 2020. Summary of results: Joint NTGS–GA geochronology project: central and western Aileron Province. <i>Northern Territory Geological Survey</i>, <b>Record 2020-011</b>.

  • This record presents new Sensitive High Resolution Ion MicroProbe (SHRIMP) U– Pb zircon results for eighteen samples from the Cairns, Cape York and Georgetown regions in Queensland. Samples from the Cairns region comprise one granite and one microgranite. Eight samples from the Cape York region and three from the Georgetown region comprise Paleozoic igneous rocks, all but one of which are part of the Carboniferous to Permian Kennedy Igneous Association. Of particular interest are the results for two rhyolitic intrusions from the Coen Inlier that are host to gold mineralisation and gave ages of approximately 280 Ma. These results are supported by similar ages reported by Kositcin et al. (2016), also from felsic dykes spatially associated with gold mineralisation. Together, they suggest a widespread, early-Permian gold (Kungurian) event in this region. The results for two felsic dykes spatially associated with gold mineralisation much farther to the south in the Georgetown region, also gave similar early-Permian ages. The geochronology of five metamorphic rocks from the Cape York region, which were analysed in support of the Coen–Cape Weymouth geology mapping project has resulted in all samples being reassigned to other formations. The work contained in this report was carried out under the auspices of the National Collaborative Framework (NCF) between Geoscience Australia and the Geological Survey of Queensland. The data and age interpretations are also available in Geoscience Australia’s Geochronology Delivery database (http://www.ga.gov.au/geochron-sapub-web/). <b>Bibliographic Reference: </b>CROSS, A.J., DHNARAM, C., BULTITUDE, R.J., BROWN, D.D., PURDY, D.J. & VON GNIELINSKI, F.E., 2019. Summary of results. Joint GSQ–GA geochronology project: Cairns, Cape York and Georgetown regions, 2015–2016. <i>Queensland Geological Record</i> <b>2019/01</b>.

  • This Record presents new Sensitive High Resolution Ion Microprobe (SHRIMP) U–Pb geochronological results for samples collected from the Mary Kathleen Domain, which forms the western part of the Eastern Fold Belt in the Mount Isa Inlier. Eight samples, comprising three granites, one quartz diorite, two metarhyolites, one feldspathic quartzite, and one of matrix material from a breccia, have been analysed as part of ongoing investigations by GSQ in collaboration with researchers from James Cook University. The results enable a better understanding of the evolution of the domain, the associated magmatism, and any related mineralisation. <b>Bibliographic Reference:</b> Kositcin, N., Bultitude, R.J., and Purdy, D.J. Summary of Results. Joint GSQ–GA Geochronology Project: Mary Kathleen Domain, Mount Isa Inlier, 2018–2019. <i>Queensland Geological Record</i><b> 2019/02</b>.