hazard
Type of resources
Keywords
Publication year
Service types
Topics
-
A probabilistic tsunami hazard assessement (PTHA) was developed for the island of Tongatapu, All modelled tsunamis were initiated by hypothetical thrust earthquakes on the nearby Kermadec-Tonga subduction zone. We provide raster outputs containing the inundation depth with an estimated 10% and 2% chance of being exceeded in 50 years, as well as the code used to perform the analysis [both available here: https://github.com/GeoscienceAustralia/ptha/tree/master/misc/probabilistic_inundation_tonga2020].
-
In 2012 Geoscience Australia produced a National Seismic Hazard Map (NSHM) of Australia using the Probabilistic Seismic Hazard Assessment (PSHA) methodology. The primary product of the project was single 500 year return period Peak Ground Acceleration (PGA) map GA record 2012/71. For this assessment the hazard has been calculated for 14 return periods (100 - 100,000 years) and 21 SA periods (0.0 - 5.0s), giving 294 hazard layers (maps) for 48000 sites across Australia. We show five of the possible 294 hazard maps and 34 of the tens of thousands of possible hazard curves and spectra. These were selected to cover the main types of additional maps that have been requested since the NSHM was released and to cover a reasonable range of return periods, SA periods and locations. In this record, the probability factor (Kp) curve given in AS1170.4 is also compared to the curves calculated for the eight capital cities. Finally, the hazard spectra for the capital cities and some selected locations is compared to the spectra for site class Be given in AS1170.4.
-
Coastal communities in Australia are particularly exposed to disasters resulting from the coincidence of severe wind damage, storm surge, coastal flooding and shoreline erosion during cyclones and extra-tropical storms. Because the climatic drivers of these events are stronger during or across specific years (e.g. during La Nina periods), they can repeatedly impact the coast over periods of weeks, months or up to a few years. The consequences of individual events are therefore exacerbated with little or no opportunity for recovery of natural systems or communities. This poster summarises the objectives, approach and methodology for this storm surge project. A contribution to the Bushfire and Natural Hazards CRC.
-
Tropical cyclone return period wind hazard layers developed using the Tropical Cyclone Risk Model. The hazard layers are derived from a catalogue of synthetic tropical cyclone events representing 10000 years of activity. Annual maxima are evaluated from the catalogue and used to fit a generalised extreme value distribution at each grid point.
-
The Tropical Cyclone Risk Model (TCRM) is a stochastic modelling system intended for the evaluation of hazard and risk associated with tropical cyclones, specifically focused on wind hazard. It allows users to simulate a large (order thousands of years) catalogue of tropical cyclone events that are statistically similar to the historical tropical cyclone record (or other input tropical cyclone records). TCRM has been used to evaluate wind hazard at local and regional scales to inform risk assessments and multi-hazard mapping exercises. By using data extracted from global climate models, TCRM can also be used to evaluate future changes in TC hazard and risk. Users can also simulate single TC events to evaluate impacts in near-real time to inform emergency management and response activities. The TCRM code is written in Python, and can be executed on a range of computing architectures - massively parallel systems (e.g. NCI National Facility) to desktop computers - and operating systems (currently Windows and *NIX systems). By carefully designing and developing the software, we have accommodated a wide audience of potential users.
-
A compilation of short animations, describing the key processes involved in tsunami generation.
-
The use of Interferometric Synthetic Aperture Radar (InSAR) to monitor volcano hazards by detecting ground deformation has been demonstrated in numerous cases around the world. This report presents an investigation of the feasibility of using InSAR as a broad scale volcano-monitoring tool in Papua New Guinea (PNG). This type of ongoing broad-scale monitoring would be a significant leap forward compared to the majority of past applications of InSAR for volcano monitoring, which have been sporadic and often conducted in hindsight. A major focus of this study was the development of open-source InSAR analysis software which makes it easier to implement in developing countries where resources may be limited. The environmental conditions of PNG, such as steep topography, dense vegetation and the moist, turbulent atmosphere pose significant challenges to volcano monitoring using InSAR. On the other hand, the remoteness of many of the volcanoes and the limited geophysical resources currently employed to monitor them, makes a broad-scale InSAR monitoring system an attractive proposition. The viability of InSAR as an ongoing tool for broad-scale volcano monitoring in PNG is constrained by the future availability of L-band Synthetic Aperture Radar (SAR) satellite imagery. The ALOS-2 mission should meet the data requirements of a broad-scale volcano monitoring programme. However, the present cost of ALOS data is prohibitive to ongoing monitoring, given the large volume of data required. The planned ALOS-2 mission will acquire SAR data with even higher temporal resolution, but this will be of little use to InSAR monitoring unless it is available at a cost conducive to regular access. At present, the greatest single barrier to a broad-scale InSAR monitoring system is the prohibitive cost of obtaining the required SAR imagery. To improve the accessibility of InSAR processing software to those in developing countries, the InSAR processing workflow that has been developed in this study is open source, being based on the GMTSAR package. In addition the interface has been simplified and a greater level of automation has been implemented to reduce the training required to become operational. The system has been designed to deal with the large volume of data processing required in a broad-scale volcano monitoring operation by parallelizing the most computationally intensive parts of the workflow. A case study of the Rabaul caldera demonstrates that L-band SAR interferometry can overcome many of the challenges of applying InSAR in PNG. However, continued development is required to enable time-series InSAR analysis. This would help to resolve the nonlinear nature of volcano deformation events and reduce the impact of spurious atmospheric delay signals. Commercial software is available to meet this requirement but the development of an open source alternative would be desirable to make the platform inclusive of developing countries.
-
Geoscience Australia has recently released the 2012 version of the National Earthquake Hazard Map of Australia. Among other applications, the map is a key component of Australia's earthquake loading code AS1170.4. In this presentation we provide an overview of the new maps and how they were developed. The maps take advantage of significant improvements in both the data sets and models used for earthquake hazard assessment in Australia since the map currently in AS1170.4-2007 was produced. These include: - An additional 20+ years of earthquake observations - Improved methods of declustering earthquake catalogues and calculating earthquake recurrence - Ground motion prediction equations (i.e. attenuation equations) based on observed strong motions instead of intensity - Revised earthquake source zones implementing a multi-layer model - Improved maximum magnitude earthquake estimates based on palaeoseismology - The use of open source software for undertaking probabilistic seismic hazard assessment, which promotes testability and repeatability Hazard curves are presented for a range of response spectral acceleration (RSA) periods between 0.0 and 1.0 s and for return periods between a few hundred to a few thousand years. These curves and maps are compared with the current earthquake hazard values in AS1170.4-2007. For a return period of 500 years, the hazard values in the 0.0 s RSA period map are generally lower or the same as the hazard factor values in the AS1170.4 map. This is also true for most of the other RSA periods up to 1.0s for the cities in Australia with Darwin being the main exception. By contrast, the hazard for return periods above 1000 years is higher than the values derived from the tables in AS1170.4 for all RSA periods.
-
A short film about a scientific project aimed at enhancing risk analysis capacities for flood, severe wind from tropical cyclones and earthquake in the Greater Metropolitan Manila Area. Manila is one of the world's megacities, and the Greater Metro Manila Area is prone to natural disasters. These events may have devastating consequences for individuals, communities, buildings, infrastructure and economic development. Understanding the risk is essential for implementing Disaster Risk Reduction programs. In partnership with AusAID, Geoscience Australia is providing technical leadership for risk analysis projects in the Asia-Pacific Region. In the Philippines, Geoscience Australia is engaging with Government of the Philippines agencies to deliver the "Enhancing Risk Analysis Capacities for Flood, Tropical Cyclone Severe Wind and Earthquake in the Greater Metro Manila Area" Project.
-
This metadata relates to the ANUGA hydrodynamic modelling results for Busselton, south-west Western Australia. The results consist of inundation extent and peak momentum gridded spatial data for each of the ten modelling scenarios. The scenarios are based on Tropical Cyclone (TC) Alby that impacted Western Australia in 1978 and the combination of TC Alby with a track and time shift, sea-level rise and riverine flood scenarios. The inundation extent defines grid cells that were identified as wet within each of the modelling scenarios. The momentum results define the maximum momentum value recorded for each inundated grid cell within each modelling scenario. Refer to the professional opinion (Coastal inundation modelling for Busselton, Western Australia, under current and future climate) for details of the project.