hazards
Type of resources
Keywords
Publication year
Topics
-
The Flood Study Summary Services support discovery and retrieval of flood hazard information. The services return metadata and data for flood studies and flood inundation maps held in the 'Australian Flood Studies Database'. The same information is available through a user interface at http://www.ga.gov.au/flood-study-web/. A 'flood study' is a comprehensive technical investigation of flood behaviour. It defines the nature and extent flood hazard across the floodplain by providing information on the extent, level and velocity of floodwaters and on the distribution of flood flows. Flood studies are typically commissioned by government, and conducted by experts from specialist engineering firms or government agencies. Key outputs from flood studies include detailed reports, and maps showing inundation, depth, velocity and hazard for events of various likelihoods. The services are deliverables fom the National Flood Risk Information Project. The main aim of the project is to make flood risk information accessible from a central location. Geoscience Australia will facilitate this through the development of the National Flood Risk Information Portal. Over the four years the project will launch a new phase of the portal prior to the commencement of each annual disaster season. Each phase will increase the amount of flood risk information that is publicly accessible and increase stakeholder capability in the production and use of flood risk information. flood-study-search returns summary layers and links to rich metadata about flood maps and the studies that produced them. flood-study-map returns layers for individual flood inundation maps. Typically a single layer shows the flood inundation for a particular likelihood or historical event in a flood study area. To retrieve flood inundation maps from these services, we recommend: 1. querying flood-study-search to obtain flood inundation map URIs, then 2. using the flood inundation map URIs to retrieve maps separately from flood-study-map. The ownership of each flood study remains with the commissioning organisation and/or author as indicated with each study, and users of the database should refer to the reports themselves to determine any constraints in their usage.
-
<p>Geoscience Australia has recently released its 2018 National Seismic Hazard Assessment (NSHA18). Results from the NSHA18 indicate significantly lower seismic hazard across almost all Australian localities at the 1/500 annual exceedance probability level relative to the factors adopted for the current Australian Standard AS1170.4–2007 (R2018). These new hazard estimates, coupled with larger kp factors, have challenged notions of seismic hazard in Australia in terms of the recurrence of damaging ground motions. As a consequence, the new hazard estimates have raised questions over the appropriateness of the prescribed probability level used in the AS1170.4 to determine appropriate seismic demands for the design of ordinary-use structures. Therefore, it is suggested that the ground-motion exceedance probability used in the current AS1170.4 be reviewed in light of the recent hazard assessment and the expected performance of modern buildings for rarer ground motions. <p>Whilst adjusting the AS1170.4 exceedance probability level would be a major departure from previous earthquake loading standards, it would bring it into line with other international building codes in similar tectonic environments. Additionally, it would offer opportunities to further modernise how seismic demands are considered in Australian building design. In particular, the authors highlight the following additional opportunities: 1) the use of uniform hazard spectra to replace and simplify the spectral shape factors, which do not deliver uniform hazard across all natural periods; 2) updated site amplification factors to ensure continuity with modern ground-motion models, and; 3) the potential to define design ground motions in terms of uniform collapse risk rather than uniform hazard. Estimation of seismic hazard at any location is an uncertain science. However, as our knowledge improves, our estimates of the hazard will converge on the actual – but unknowable – (time independent) hazard. It is therefore prudent to regularly update the estimates of the seismic demands in our building codes using the best available evidence-based methods and models.
-
This dataset provides geospatial representation of the Australian wind regions defined in AS/NZS 1170.2 (2021) Structural Design Actions Part 2: wind actions (hereafter “Standard”). The dataset is intended to assist in delineating areas for referencing the Standard – for example in assigning building vulnerability models across the country. The dataset represents Geoscience Australia's interpretation of the definitions set out in the Standard and is intended for internal use only. This dataset is not suitable for design purposes: professional designers should refer to the Standard for assessing the wind region for their projects. In the event of any inconsistency between this dataset and Figure 3.1 in the Standard, the Standard will take precedence. This product has not been formally endorsed by Standards Australia or the relevant Working Groups and subcommittees. References to localities are indicative and use the best available information at the time of production. For further information on this dataset, please contact hazards@ga.gov.au.
-
Geoscience Australia is currently drafting a new National Earthquake Hazard Map of Australia using modern methods and models. Among other applications, the map is a key component of Australia's earthquake loading code AS1170.4. In this paper we provide a brief history of national earthquake hazard maps in Australia, with a focus on the map used in AS1170.4, and provide an overview of the proposed changes for the new map. The revision takes advantage of the significant improvements in both the data sets and models used for earthquake hazard assessment in Australia since the original maps were produced. These include: - An additional 20+ years of earthquake observations - Improved methods of declustering earthquake catalogues and calculating earthquake recurrence - Ground motion prediction equations (i.e. attenuation equations) based on observed strong motions instead of intensity - Revised earthquake source zones - Improved maximum magnitude earthquake estimates based on palaeoseismology - The use of open source software for undertaking probabilistic seismic hazard assessment which promotes testability and repeatability The following papers in this session will address in more detail the changes to the earthquake catalogue, earthquake recurrence and ground motion prediction equations proposed for use in the draft map. The draft hazard maps themselves are presented in the final paper.
-
Manila is one of the world's megacities, and the Greater Metro Manila Area is prone to natural disasters. These events may have devestating consequences for individuals, communities, buildings, infrastructure and economic development. Understanding the risk is essential for implementing Disaster Risk Reduction programs. In partnership with AusAID, Geoscience Australia is providing technical leadership for risk analysis projects in the Asia-Pacific Region. In the Philippines, Geoscience Australia is engaging with Government of the Philippines agencies to deliver the "Enhancing Risk Analysis Capacities for Flood, Tropical Cyclone Severe Wind and Earthquake in the Greater Metro Manila Area" Project.
-
<div>Offshore probabilistic tsunami hazard assessments (PTHAs) are increasingly available for earthquake generated tsunamis. They provide standardized representations of tsunami scenarios, their uncertain occurrence-rates, and models of the deep ocean waveforms. To quantify onshore hazards it is natural to combine this information with a site-specific inundation model, but this is computationally challenging to do accurately, especially if accounting for uncertainties in the offshore PTHA. This study reviews an efficient Monte Carlo method recently proposed to solve this problem. The efficiency comes from preferential sampling of scenarios that are likely important near the site of interest, using a user-defined importance measure derived from the offshore PTHA. The theory of importance sampling enables this to be done without biasing the final results. Techniques are presented to help design and test Monte Carlo schemes for a site of interest (before inundation modelling) and to quantify errors in the final results (after inundation modelling). The methods are illustrated with examples from studies in Tongatapu and Western Australia.</div> Abstract submitted/presented to the International Conference on Coastal Engineering (ICCE) 2022 - Sydney (https://icce2022.com/). Citation: Davies, G. (2023). FROM OFFSHORE TO ONSHORE PROBABILISTIC TSUNAMI HAZARD ASSESSMENT WITH QUANTIFIED UNCERTAINTY: EFFICIENT MONTE CARLO TECHNIQUES. <i>Coastal Engineering Proceedings</i>, (37), papers.18. https://doi.org/10.9753/icce.v37.papers.18
-
Developing a framework and computational methodology for evaluating the impacts and risks of extreme fire events on regional and peri-urban populations (infrastructure and people) applicable to the Australian region. The research considers three case studies of recent extreme fires employing an ensemble approach (sensitivity analysis) which varies the meteorology, vegetation and ignition in an effort to estimate fire risk to the case-study fire area and adjacent region.
-
Tropical cyclone return period wind hazard layers developed using the Tropical Cyclone Risk Model. The hazard layers are derived from a catalogue of synthetic tropical cyclone events representing 10000 years of activity. Annual maxima are evaluated from the catalogue and used to fit a generalised extreme value distribution at each grid point.
-
The Tropical Cyclone Risk Model (TCRM) is a stochastic modelling system intended for the evaluation of hazard and risk associated with tropical cyclones, specifically focused on wind hazard. It allows users to simulate a large (order thousands of years) catalogue of tropical cyclone events that are statistically similar to the historical tropical cyclone record (or other input tropical cyclone records). TCRM has been used to evaluate wind hazard at local and regional scales to inform risk assessments and multi-hazard mapping exercises. By using data extracted from global climate models, TCRM can also be used to evaluate future changes in TC hazard and risk. Users can also simulate single TC events to evaluate impacts in near-real time to inform emergency management and response activities. The TCRM code is written in Python, and can be executed on a range of computing architectures - massively parallel systems (e.g. NCI National Facility) to desktop computers - and operating systems (currently Windows and *NIX systems). By carefully designing and developing the software, we have accommodated a wide audience of potential users.
-
Tropical Cyclone (TC) Yasi crossed Queensland's Cassowary Coast during the night of the 2nd and 3rd of February, 2011. The cyclone was forecast by BoM (2011) to be a severe storm with wind gusts forecast to exceed the design gust wind speeds for houses set out in AS4055. Following the passage of the cyclone, it was evident that the severe wind and large coastal storm surge had caused significant damage to the region's building stock. Geoscience Australia (GA), together with collaborators from the National Institute of Water and Atmospheric Research, New Zealand (NIWA), Philippine Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) and Maddocks & Associates, undertook a survey of damage to the region's buildings caused by severe wind and storm surge.