coast
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
<div>The A1 poster incorporates 4 images of Australia taken from space by Earth observing satellites. The accompanying text briefly introduces sensors and the bands within the electromagnetic spectrum. The images include examples of both true and false colour and the diverse range of applications of satellite images such as tracking visible changes to the Earth’s surface like crop growth, bushfires, coastal changes and floods. Scientists, land and emergency managers use satellite images to analyse vegetation, surface water or human activities as well as evaluate natural hazards.</div>
-
No abstract available
-
Monitoring changes in the spatial distribution and health of biotic habitats requires spatially extensive surveys repeated through time. Although a number of habitat distribution mapping methods have been successful in clear, shallow-water coastal environments (e.g. aerial photography and Landsat imagery) and deeper (e.g. multibeam and sidescan sonar) marine environments, these methods fail in highly turbid and shallow environments such as many estuarine ecosystems. To map, model and predict key biotic habitats (seagrasses, green and red macroalgae, polychaete mounds [Ficopamatus enigmaticus] and mussel clumps [Mytilus edulis]) across a range of open and closed estuarine systems on the south-west coast of Western Australia, we integrated post-processed underwater video data with interpolated physical and spatial variables using Random Forest models. Predictive models and associated standard deviation maps were developed from fine-scale habitat cover data. Models performed well for spatial predictions of benthic habitats, with 79-90% of variation explained by depth, latitude, longitude and water quality parameters. The results of this study refine existing baseline maps of estuarine habitats and highlight the importance of biophysical processes driving plant and invertebrate species distribution within estuarine ecosystems. This study also shows that machine-learning techniques, now commonly used in terrestrial systems, also have important applications in coastal marine ecosystems. When applied to video data, these techniques provide a valuable approach to mapping and managing ecosystems that are too turbid for optical methods or too shallow for acoustic methods.
-
Coral reefs occur in shallow water with sea surface temperatures (SST) greater than 18ºC, extending beyond the tropics where warm currents enable their establishment [Hopley et al., 2007]. The southernmost reef in the Pacific Ocean occurs at Lord Howe Island (31° 30°S), fringing 6 km of the western margin of the island, with isolated reef patches on the north, west and eastern sides. The island is a Miocene volcanic remnant on the western flank of the Lord Howe Rise (foundered continental crust) formed of basaltic cliffs rising to 875 m, flanked by Quaternary eolianites [McDougall et al., 1981]. The reefs support 50-60 species of scleractinian corals, whose rates of growth are only slightly slower than in more tropical locations [Harriott and Banks, 2002]. However, carbonate sediments on the surrounding shelf are dominated by temperate biota, such as foraminifera and algal rhodoliths [Kennedy et al., 2002]. Prominent in mid shelf is a broad ridge-like feature that rises from water depths of 30-50 m, which we considered to be a relict coral reef that formerly encircled the island [Woodroffe et al., 2005, 2006]. This paper describes results of sonar swath mapping to determine the extent of the reef, and coring and dating that establishes its age and demise.
-
Along the Aceh-Andaman subduction zone, there was no historical precedent for an event the size of the 2004 Sumatra-Andaman tsunami; therefore, neither the countries affected by the tsunami nor their neighbours were adequately prepared for the disaster. By studying the geological signatures of past tsunamis, the record may be extended by thousands of years, leading to a better understanding of tsunami frequency and magnitude. Sedimentary evidence for the 2004 Sumatra-Andaman tsunami and three predecessor great Holocene tsunamis is preserved on a beach ridge plain on Phra Thong Island, Thailand. Optically stimulated luminescence ages were obtained from tsunami-laid sediment sheets and surrounding morphostratigraphic units. Single-grain results from the 2004 sediment sheet show sizable proportions of near-zero grains, suggesting that the majority of sediment was well-bleached prior to tsunami entrainment or that the sediment was bleached during transport. However, a minimum-age model needed to be applied in order to obtain a near-zero luminescence age for the 2004 tsunami deposit as residual ages were found in a small population of grains. This demonstrates the importance of considering partial bleaching in water-transported sediments. The OSL results from the predecessor tsunami deposits and underlying tidal flat sands show good agreement with paired radiocarbon ages and constrain the average recurrence of large late Holocene tsunami on the western Thai coast to between 500 to 1000 years. This is the first large-scale application of luminescence dating to gain recurrence estimates for large Indian Ocean tsunami. These results increase confidence in the use of OSL to date tsunami-laid sediments, providing an additional tool to tsunami geologists when material for radiocarbon dating is unavailable. Through an understanding of the frequency of past tsunami, OSL dating of tsunami deposits can improve our understanding of tsunami hazard and provide a means of assessing fu
-
Explaining spatial variation and habitat complexity of benthic habitats from underwater video through the use of maps. Different methodologies currently used to process and analyse percent cover of benthic organisms from underwater video will be addressed and reviewed.
-
OzCoasts is a web-based database and information system managed by Geoscience Australia that draws together a diverse range of data and information on Australia's coasts and estuaries. Maps, images, reports and data can be downloaded and there are tools to assist with coastal science, monitoring, management and policy. A Tropical Rivers module is the newest major feature of the website and was developed in partnership with the Griffith University node of the Tropical Rivers and Coastal Knowledge (TRaCK) consortium and Boab Interactive. The module contains the Australian Riverine Landscape Classifier (AURICL) and provides links to the TRaCK Digital Atlas. AURICL will assist researchers and policy makers make better decisions about riverine landscapes. It is a dynamic and flexible system (i.e. can be updated as new data layers become available) for classifying and comparing tropical catchments and their rivers based on the similarity, or dissimilarity, of a wide range of parameters. Importantly, AURICL provides researchers with: (i) data-sets to link stream segments from the National Catchment Boundaries database to estuary point locations for north Australia; (ii) a collection of riverine attribute data that sum their upstream contributions to an estuary; and (iii) an amalgamation of inputs for estuaries with multiple contributing streams. To date, researchers have only had access to very general data on the catchments that feed estuaries (e.g. catchment areas). The Mangroves and Coastal Saltmarsh of Victoria: Distribution, Condition, Threats and Management report is new to the Habitat Mapping module, and constitutes the first State-wide assessment of Victoria's coastal wetlands. The 514 page report, led by Prof. Paul Boon (Victoria University), examines the diversity of wetland types and plant communities along the Victorian coast and provides analysis of the ecological condition and major threats to coastal wetlands in Victoria. OzCoasts will also soon deliver the Coastal Eutrophication Risk Assessment Tool (CERAT) for the NSW Office of Environment and Heritage. CERAT will help identify and prioritise land use planning decisions to protect and preserve the health of NSW estuaries. A partnership between OzCoasts and the coastal facility of the TERN (Terrestrial Ecosystem Research Network) is also currently under negotiation.
-
This data package consists of 83 QuickBird satellite images, each in four spectral bands at 2.4 metre spatial resolution. The scene locations are scattered around the Australian coast line. The data was initially acquired as part of a joint project involving Geoscience Australia (GA), CSIRO Land and Water and the University of Tasmania, as part of the National Land and Water Resource Audit (NLWRA). The data are supplied under licence and potential licensees must first seek specific approval from the satellite operator (through GA) before being granted access to the data.
-
Legacy product - no abstract available
-
Legacy product - no abstract available