From 1 - 10 / 175
  • This report describes the investigations into the coastal creek system conducted within the Fitzroy agricultural contaminants project. Before this work started there had been only a limited data acquisition on the water quality parameters in several of the coastal creeks carried out by the Queensland Environmental Protection Agency (EPA). These data are a valuable augmentation to the data collected under Coastal CRC auspices. We briefly outline the consolidated dataset, draw qualitative conclusions from it, and develop a conceptual model reflecting the interacting processes. These analyses are then the starting point for the development of a quantitative characterisation of the role of the coastal creeks in the biogeochemistry of Keppel Bay.

  • In this study of the beach-ridge plain at Keppel Bay, on the central coast of Queensland, we examine ridge morphology, sediment texture and geochemistry. We build a detailed chronology for the ridge succession using the optically stimulated luminescence (OSL) dating method. Although our interpretations are preliminary, our results suggest that significant changes have occurred in the rate of shoreline accumulation of sediment, catchment sediment source areas, and that there have been minor falls in relative sea level.

  • Measured probability distributions of shoreline elevation, swash height (shoreline excursion length) and swash maxima and minima from a wide range of beach types are compared to theoretical probability distributions. The theoretical distributions are based on assumptions that the time series are weakly steady-state, ergodic and a linear random process. Despite the swash process being inherently non-linear, our results indicate that these assumptions are not overly restrictive with respect to modeling exceedence statistics in the upper tail of the probability distribution. The RMS-errors for a range of exceedence level statistics (50, 10, 5, 2, and 1 percent) were restricted to <10 cm (and often <5 cm) for all of the swash variables that were investigated. The results presented here provide the basis for further refinement of coastal inundation modeling as well as stochastic-type morphodynamic modeling of beach response to waves. Further work is required, however, to relate the parameters of swash probability distributions to wave conditions further offshore.

  • There is growing global concern for the impact of increased fluvial sediment loads on tropical coral reefs and seagrass ecosystems. The Fitzroy River is a macrotidal, tide-dominated estuary in the dry tropics of central Queensland and is a major contributor of sediment to the southern Great Barrier Reef (GBR) lagoon. The estuary currently receives most of its sediment during large episodic flood events commonly associated with cyclonic depressions. The sediment dynamics of macrotidal estuaries and especially of wet-dry tropical systems, with intermittent flows and sediment discharge are poorly understood. Average annual sediment budgets for such a system are also difficult to estimate due to the sporadic nature of flood discharge events. Therefore we have estimated a long-term sediment accumulation rate of catchment-derived sediment trapped in the estuary using the Holocene stratigraphic sequence, determined from a series of sediment cores, dated with radiocarbon and optically stimulated luminescence (OSL), and integrated with industry borehole data. We estimate that 17,400 million tonnes (Mt) of river sediment has accumulated in the estuary during the last 8000 years. This suggests a minimum mean annual bulk sediment discharge of the Fitzroy River of 2000 kt yr-1. This estimated 2175 kilotonnes per year (kt yr-1) of bulk sediment is equivalent to 25% of the estimated average annual modern bulk sediment discharge of the Fitzroy River of 8800 kt yr-1, (Kelly and Wong, 1996) suggesting that the sediment trapping efficiency of the Fitzroy estuary during the Holocene has been approximately 25%. This implies that 75% of the river sediment has been exported from the estuary into Keppel Bay and the adjacent GBR lagoon during the Holocene. With minimal accommodation space left in the floodplain, modern sediment accumulation appears to be focussed around the mangroves and tidal creeks, which cover an area of 130 km2. Cores from the tidal creeks were dated using 137Cs, excess 210Pb, and OSL and display sedimentation rates of approximately 1.5 cm yr-1 for the last 45-120 years, or 1700 kt yr-1, and suggest a modern sediment trapping efficiency for the estuary of around 19%. These results provide useful insights into the long-term sedimentation and quantification of the sediment trapping efficiency of a subtropical macro-tidal estuary with episodic floods, where sediment trapping will vary seasonally and inter-annually.

  • Explaining spatial variation and habitat complexity of benthic habitats from underwater video through the use of maps. Different methodologies currently used to process and analyse percent cover of benthic organisms from underwater video will be addressed and reviewed.

  • The Australian Government, through the Department of Climate Change and Energy Efficiency, recognises the need for information that allows communities to decide on a strategy for climate change adaptation. A first pass national assessment of vulnerability to Australia's coast identified that considerable sections of the coast could be impacted by sea level rise. This assessment however, did not provide sufficient detail to allow adaptation planning at a local level. Accounting for sea level rise in planning procedures requires knowledge of the future coastline, which is still lacking. Modelling the coastline given sea level rise is complex, however. Erosion will alter the shores in varied ways around Australia's coastline, and extreme events will inundate areas that currently appear to be well above the projected sea level. Moreover, the current planning practice of designating zones with acceptable inundation risk is no longer practical when considering climate change, as this is likely to remain uncertain for some time. Geoscience Australia, with support from the DCCEE, has now conducted a more detailed study for a local area in Western Australia that was identified to be at high risk in the national assessment. The aim of the project was to develop a localised approach so that information could be developed to support adaptation to climate change in planning decisions at the community level. The approach included modelling a historical tropical cyclone and its associated storm surge for a range of sea level rise scenarios. The approach also included a shoreline translation model that forecast changes in coastal sediment transport. Inundation footprints were created and integrated with Geoscience Australia's national exposure information system, NEXIS, to develop impact assessments on building assets, roads and railways. Studies such as this can be a first step towards enabling the planning process to adapt to increased risk.

  • Coral reefs occur in shallow water with sea surface temperatures (SST) greater than 18ºC, extending beyond the tropics where warm currents enable their establishment [Hopley et al., 2007]. The southernmost reef in the Pacific Ocean occurs at Lord Howe Island (31° 30°S), fringing 6 km of the western margin of the island, with isolated reef patches on the north, west and eastern sides. The island is a Miocene volcanic remnant on the western flank of the Lord Howe Rise (foundered continental crust) formed of basaltic cliffs rising to 875 m, flanked by Quaternary eolianites [McDougall et al., 1981]. The reefs support 50-60 species of scleractinian corals, whose rates of growth are only slightly slower than in more tropical locations [Harriott and Banks, 2002]. However, carbonate sediments on the surrounding shelf are dominated by temperate biota, such as foraminifera and algal rhodoliths [Kennedy et al., 2002]. Prominent in mid shelf is a broad ridge-like feature that rises from water depths of 30-50 m, which we considered to be a relict coral reef that formerly encircled the island [Woodroffe et al., 2005, 2006]. This paper describes results of sonar swath mapping to determine the extent of the reef, and coring and dating that establishes its age and demise.

  • An assessment of the potential impacts of climate change on coastal communities has been undertaken in collaboration with the Department of Climate Change and Energy Efficiency (DCCEE). This first-pass national assessment includes an evaluation of the exposure infrastructure (residential and commercial buildings, as well as roads and rail) to sea-level rise (SLR), storm surge and coastal recession. Some of the information contained in this report was included in the Department of Climate Change (now Department of Climate Change and Energy Efficiency) report "Climate Change Risks to Australia's Coast", published in 2009, and its supplement published in 2011.

  • The coastal zone is arguably the most difficult geographical region to capture as data because of its dynamic nature. Yet, coastal geomorphology is fundamental data required in studies of the potential impacts of climate change. Anthropogenic and natural structural features are commonly mapped individually, with their inherent specific purposes and constraints, and subsequently overlain to provide map products. This coastal geomorphic mapping project centered on a major coastal metropolitan area between Lake Illawarra and Newcastle, NSW, has in contrast classified both anthropogenic and natural geomorphological features within the one dataset to improve inundation modelling. Desktop mapping was undertaken using the Australian National Coastal Geomorphic (Polygon) Classification being developed by Geoscience Australia and supported by the Department of Climate Change. Polygons were identified from 50cm and 1m aerial imagery. These data were utilized in parallel with previous maps including for example 1:25K Quaternary surface geology, acid sulphate soil risk maps as well as 1:100K bedrock geology polygon maps. Polygons were created to capture data from the inner shelf/subtidal zone to the 10 m contour and include fluvial environments because of the probability of marine inundation of freshwater zones. Field validation was done as each desktop mapping section was near completion. This map has innovatively incorporated anthropogenic structures as geomorphological features because we are concerned with the present and future geomorphic function rather than the past. Upon completion it will form part of the National Coastal Geomorphic Map of Australia, also being developed by Geoscience Australia and utilized in conjunction with Smartline.