From 1 - 10 / 69
  • The study provides a comprehensive analysis of the natural gases from the Bonaparte, Browse, Carnarvon and Perth basins (in 4 modules). Geochemical analyses for the molecular and carbon isotope composition were performed on 96 gases and associated liquids, and these data are interpreted in a geological context. Additional non-exclusive data from the AGSO database have been used for correlation/interpretation purposes. The study addresses factors influencing the composition of gaseous and other light hydrocarbons in natural gas (and associated oil accumulations) including; - primary source and maturity controls, - secondary alteration processes, e.g. migration fractionation, water washing, biodegradation, and - multiple charge histories, including deep dry gas inputs.

  • Like many of the basins along Australia's eastern seaboard, there is currently only a limited understanding of the geothermal energy potential of the New South Wales extent of the Clarence-Moreton Basin. To date, no study has examined the existing geological information available to produce an estimate of subsurface temperatures throughout the region. Forward modelling of basin structure using its expected thermal properties is the process generally used in geothermal studies to estimate temperatures at depth in the Earth's crust. The process has seen increasing use in complex three-dimensional (3D) models, including in areas of sparse data. The overall uncertainties of 3D models, including the influence of the broad assumptions required to undertake them, are generally only poorly examined by their authors and sometimes completely ignored. New methods are presented in this study which will allow estimates and uncertainties to be addressed in a quantitative and justifiable way. Specifically, this study applies Monte Carlo Analysis to constrain uncertainties through random sampling of statistically congruent populations. Particular focus has been placed on the uncertainty in assigning thermal conductivity values to complex and spatially extensive geological formations using only limited data. As a case study these new methods are then applied to the New South Wales extent of the Clarence-Moreton Basin. The geological structure of the basin has been modelled using data from existing petroleum drill holes, surface mapping and information derived from previous studies. A range of possible lithological compositions was determined for each of the major geological layers through application of compositional data analysis. In turn, a range of possible thermal conductivity values was determined for the major lithology groups using rock samples held by the NSW Department of Primary Industries (DPI). These two populations of values were then randomly sampled to establish 120 different forward models, the results of which have been interpreted to present the best estimate of expected subsurface temperatures, and their uncertainties. These results suggest that the Clarence-Moreton Basin has a moderate geothermal energy potential within an economic drilling depth. This potential however, displays significant variability between different modelling runs, which is likely due to the limited data available for the region. While further work could improve these methods, it can be seen from this study that uncertainties can provide a means by which to add confidence to results, rather than undermine it.

  • The Exploring for the Future program is an initiative by the Australian Government dedicated to boosting investment in resource exploration in Australia. As part of the Exploring for the Future program, this study aims to improve our understanding of the petroleum resource potential of northern Australia. The physical properties of organic matter in sedimentary rocks changes composition in an irreversible and often sequential manner after burial, diagenesis, catagenesis and metagenesis with increasing thermal maturity. Characterising these changes and identifying the thermal maturity of sedimentary rocks is essential for calculating thermal models needed in a petroleum systems analysis. This study presents organic petrology on 15 Proterozoic aged shales from the Velkerri and Barney Creek formations in the McArthur Basin and the Mullera Formation, Riversleigh Siltstone, Lawn Hill and Termite Range formations in the South Nicholson region. Qualitative maceral analysis of the 15 samples are described in addition to bitumen reflectance measurements. These samples were analysed at the Montanuniversität Leoben, Austria in June 2020. The results of this study can be used to improve our understanding of the thermal maturity and hydrocarbon prospectivity of Proterozoic aged sedimentary basins in northern Australia.

  • High voltage transmission towers are key linear assets that supply electricity to communities and key industries and are constantly exposed to wind effects where they traverse steep topography or open terrain. Lattice type high voltage transmission towers are highly optimised structures to minimise cost and reserve strength at design wind speeds (Albermani and Kitipornchai, 2003). The structures are tested under static loading conditions for specified load cases at the design stage. However, the interconnected nature of the lattice towers and conductors present a complex response under dynamic wind loading in service (Fujimura, el.al., 2007). The transmission tower's survival under severe wind and additional load transfer due to collapse of its neighbours is difficult to assess through modelling. Furthermore, the lack of data in the industry doesn't allow for a probabilistic analysis based on history (Abdallah, et.al., 2008). Hence, there is a need for developing an alternative methodology for analysing transmission tower collapse and survival of transmission lines subjected to cyclonic winds utilising design information, limited field data and industry expertise.

  • Presented to the Association of Mining and Exploration Companies (AMEC), Perth, March 2007

  • The Geoscience Australia Boreholes database (BOREHOLE) includes borehole header and directional survey data from: 1. boreholes drilled by Geoscience Australia and its predecessor organisations (BMR, AGSO), 2. all resource exploration boreholes drilled in Australian Commonwealth offshore marine jurisdictions, 3. a selection of Australian onshore mineral exploration, groundwater, geothermal and seismic boreholes, and 4. a small number of research-related boreholes outside of the Australian jurisdiction. Geoscience Australia is not a reporting or regulatory authority for borehole drilling. Borehole information in the Geoscience Australia Boreholes database is sourced from various regulatory authorities in the States, Northern Territory and Commonwealth governments for Geoscience Australia research purposes. Where Geoscience Australia is not the custodian of borehole data provided in this database, the custodian agency provided with the data should be consulted as the authoritative source.

  • The Pine Creek AEM survey was flown over the Pine Creek Orogen in the Northern Territory during 2008 and 2009 as part of the Australian Government's Onshore Energy Security Program at Geoscience Australia (GA). The survey covers an area of 74,000 km2 from Darwin to Katherine in the Northern Territory which hosts several world class deposits, including the Ranger Uranium Mine, Nabarlek, Mt Todd, Moline and Cosmo Howley. Aimed at regional mapping, uranium exploration, reducing exploration risk and promoting exploration activity, the program worked closely with industry partners to infill wide regional line spacing (5km) with deposit scale line spacing (less than 1km). The survey results are relevant in exploration for a variety of commodities and resources, including uranium, copper, lead, zinc, gold, nickel and groundwater. Geoscience Australia's interpretation products include sample-by-sample layered earth inversion products comprising located data, geo-located conductivity depth sections, depth slice grids, elevation slice grids, inversion report and an interpretation report. All data and products are available from GA as well as the Northern Territory Geological Survey Geophysical Image Web Server.

  • The Paterson airborne electromagnetic (AEM) survey is Australia's first regional AEM survey, flown between September 2007 and August 2008 under the auspices of the Australian Government's Onshore Energy Security Program (OESP). The survey was flown over the Archean eastern Pilbara, the Palaeoproterozoic Rudall Complex and the Neoproterozoic Yeneena Basin (both of which comprise the Paterson Orogen) and on-lapping sediments of the Neoproterozoic-Paleozoic Officer Basin and Palaeozoic-Mesozoic Canning Basin. The survey was flown at line spacings of 6, 2 and 1 km and 200 m for a total area of 45,330 km2 targeting known mineral deposits and other highly prospective rocks under cover. The survey was designed to provide pre-competitive data to reduce exploration risk primarily for uranium but also for other metals as well as groundwater resources for local indigenous communities and mineral exploration.

  • This report has been prepared at the request of Engineers of the Department of Works and Housing. The writer spent a day with Mr. Crotty examining the site, and another day alone studying general geological conditions relevant to the proposed scheme. The visit and its findings are outlined in this report.

  • A newsletter to Project Stakeholders to inform of progress and future events