From 1 - 10 / 76
  • The northern Perth Basin is an elongate sedimentary basin, located off the southwestern margin of Australia. The basin is prospective for petroleum resources, but is relatively under-explored, and the nature of the sediment-basement contact is relatively unknown due to a high degree of structuring and deep basement depth inhibiting seismic imagining. Accurate depth conversion of seismic interpretation is vital for use as constraints in gravity modelling and in other basin modelling tasks, but depth conversion requires good quality seismic velocity information. The number and distribution of wells with velocity information in the northern Perth Basin is poor, but there exists a large amount of seismic stacking velocities. Seismic stacking velocities are an outcome of seismic processing and are thus not a direct measurement of the speed of sound in rocks. To improve the quality of stacking velocities we propose a methodology to calibrate stacking velocities against well velocities, which is as follows: 1. Check each velocity dataset for errors 2. Modify the datum of each dataset to the sea floor 3. Convert all datasets to TWT and depth domain 4. Resample all velocity datasets to the same depth intervals 5. Cross plot stacking velocity depths near a well site with corresponding well depths 6. Fit a linear polynomial to this cross-plot (higher order polynomials were tried also), and determine calibration coefficient from the gradient of the polynomial. 7. Grid calibration coefficients 8. Multiply depths derived from stacking velocities by calibration coefficient grid An assessment of depth conversion errors relative to wells shows that this methodology improves depth conversion results to within ±50m; this depth uncertainty translates into a gravity anomaly error of about ±20 gu, which is acceptable for regional scale gravity modelling.

  • Despite long history of studies the Wallaby Plateau offshore Western Australia remains a controversial feature. Analysis of interval seismic velocities from Geoscience Australia's 2008/09 seismic survey 310 in conjunction with seismic reflection interpretation provides new insights into the geology of the Plateau. Seismically distinctive divergent dipping reflector (DDR) packages have been identified. The seismic character of the DDR packages is similar to seaward dipping reflector (SDR) packages of inferred volcanic composition. Initial analysis of seismic velocity profiles indicated affinities between the DDR packages and known sedimentary strata in the Houtman Sub-basin. Effect of water loading on seismic velocities is commonly ignored in offshore studies. However, direct comparative analysis of interval velocity patterns between areas of significantly different water depth requires various water pressure related changes in velocity to be accounted for. There are controversies in methodology and application of water depth adjustment to seismic velocities, and presentation of velocity models as function of pressure rather than two-way time, or depth emerges as a possible solution. Water depth adjustment of seismic velocities analysed in our study reduces distinction between SDRs, DDRs and sedimentary strata such that discrimination between volcanic and sedimentary strata in DDR or SDR packages is equivocal. A major uncertainty of this interpretation is due to a lack of the reference velocity model of SDRs and DDRs investigated globally.

  • In 2008, as part of the Australian Government's Onshore Energy Security Program, Geoscience Australia, acquired deep seismic reflection, wide-angle refraction, magnetotelluric (MT) and gravity data along a 250 km east-west transect that crosses several tectonic domain boundaries in the Gawler Craton and also the western boundary of the South Australian Heat Flow Anomaly (SAHFA). Geophysical datasets provide information on the crustal architecture and evolution of this part of the Archean-Proterozoic Gawler Craton. The wide-angle refraction and MT surveys were designed to supplement deep seismic reflection data, with velocity information for the upper crust, and electrical conductivity distribution from surface to the upper mantle. The seismic image of the crust from reflection data shows variable reflectivity along the line. The upper 2 s of data imaged nonreflective crust; the middle to lower part of the crust is more reflective, with strong, east-dipping reflections in the central part of the section.The 2D velocity model derived from wide-angle data shows velocity variations in the upper crust and can be constrained down to a depth of 12 km. The model consists of three layers overlying basement. The mid-crustal basement interpreted from the reflection data, at 6 km in depth in the western part of the transect and shallowing to 1 km depth in the east, is consistent with the velocity model derived from wide-angle and gravity data. MT modelling shows a relatively resistive deep crust across most of the transect, with more conductive crust at the western end, and near the centre. The enhanced conductivity in the central part of the profile is associated with a zone of high reflectivity in the seismic image. Joined interpretation of seismic data supplemented by MT, gravity and geological data improve geological understanding of this region.

  • Stacking velocities for surveys 1001 (Shell Petrel) and 1053 (Esso R74A) over the Bremer and Denmark Sub-basins were analysed for depth and time.

  • Various aspects of isostasy concept are intimately linked to estimation of the elastic thickness of lithosphere, amplitude of mantle-driven vertical surface motions, basin uplift and subsidence. Common assumptions about isostasy are not always justified by existing data. For example, refraction seismic data provide essential constraints to estimation of isostasy, but are rarely analysed in that respect. Average seismic velocity, which is an integral characteristic of the crust to any given depth, can be calculated from initial refraction velocity models of the crust. Geoscience Australia has 566 full crust models derived from the interpretation of such data in its database as of January 2012. Average velocity through velocity/density regression translates into average density of the crust, and then into crustal column weight to any given depth. If average velocity isolines become horizontal at some depth, this may be an indication of balanced mass distribution (i.e., isostasy) in the crust to that depth. For example, average velocity distribution calculated for a very deep Petrel sedimentary basin on the Australian NW Margin shows no sign of velocity isolines flattening with depth all the way down to at least 15 km below the deepest Moho. Similar estimates for the Mount Isa region lead to opposite conclusions with balancing of average seismic velocities achieved above the Moho. Here, we investigate average seismic velocity distribution for the whole Australian continent and its margins, uncertainties of its translation into estimates of isostasy, and the possible explanations for misbalances in isostatic equilibrium of the Australian crust.

  • We report four lessons from experience gained in applying the multiple-mode spatially-averaged coherency method (MMSPAC) at 25 sites in Newcastle (NSW) for the purpose of establishing shear-wave velocity profiles as part of an earthquake hazard study. The MMSPAC technique is logistically viable for use in urban and suburban areas, both on grass sports fields and parks, and on footpaths and roads. A set of seven earthquake-type recording systems and team of three personnel is sufficient to survey three sites per day. The uncertainties of local noise sources from adjacent road traffic or from service pipes contribute to loss of low-frequency SPAC data in a way which is difficult to predict in survey design. Coherencies between individual pairs of sensors should be studied as a quality-control measure with a view to excluding noise-affected sensors prior to interpretation; useful data can still be obtained at a site where one sensor is excluded. The combined use of both SPAC data and HVSR data in inversion and interpretation is a requirement in order to make effective use of low frequency data (typically 0.5 to 2 Hz at these sites) and thus resolve shear-wave velocities in basement rock below 20 to 50 m of soft transported sediments.

  • Stations on the Australian continent receive a rich mixture of ambient seismic noise from the surrounding oceans and the numerous small earthquakes in the earthquakes belts to the north in Indonesia and east in Tonga-Kermadec as well as more distant source zones. The noise field at a station contains information about the structure in the vicinity of the site and this can be exploited by applying an autocorrelation procedure to continuous records. Continuous vertical component records from 242 stations (permanent and temporary) across the continent have been processed using running windows of 6 hours long with subsequent stacking. A distinctive pulse, with a time delay between 8 and 30 s from zero offset, is found in the autocorrelation results. This pulse has a frequency content between 1.5 and 3 Hz suggesting P-wave multiples trapped in the crust. Synthetic modeling, with control of multiple phases, shows that a local PmP phase can be recovered with the autocorrelation method. We are therefore able to use this identification to map out the depth to Moho across the continent, and obtain results that largely conform to those from previous studies using a combination of data from refraction, reflection profiles and receiver functions. This approach can be used for Moho depth estimation using just vertical component records and effective results can be obtained with temporary deployments of just a few months.

  • Geoscience Australia acquired the Canning Coastal Deep Crustal Seismic Survey in 2014. The survey involved the acquisition of seismic reflection and gravity data along two traverses, 14GA-CC1 (562km) and 14GA-CC2 (143km) between Port Hedland and Derby, WA. The purpose of the survey was to image the crustal architecture of the geology underlying the Canning Basin and its relationship to the boundaries between the crystalline hard rock areas of the North (Kimberley) and West Australian (Pilbara) cratons. As well as establishing the subsurface extent of the Canning Basin and the extent and nature of its sub-basins and troughs. The project was collaboration between the Geological Survey of Western Australia and Geoscience Australia with funding from the Western Australian Royalty for Regions Scheme. Raw data for this survey are available on request from clientservices@ga.gov.au

  • Seismic reflection traverses were surveyed across the Perth Basin at Cookernup, W.A. These traverses were planned to find the thickness and dip of the Basin sediments adjacent to the Darling Scarp and to discover any faulting or folding within them; also to determine the applicability of the seismic method as a tool for both regional and detailed investigation in this area. Seismic refraction traverses were surveyed to help in the solution of problems encountered in the interpretation of the reflection cross-sections. The survey indicated a considerable thickness of sediments about 20,000 ft, at the eastern margin of the Basin near the Darling Scarp, and suggested tectonic structure that is not indicated in surface geology, The reflection traverses indicated that sediments (presumably Lower Palaeozoic or Precambrian) lying deep in the Perth Basin may continue underneath the Darling Scarp and abut the granitic gneisses etc. of the Western Australian Shield on an overthrust fault plane. The overthrust fault, if it exists, does not reach the surface, but is covered to a depth of possibly some few hundred feet by younger sediments and also by alluvium eroded from the Darling Scarp. Some reflection and refraction shooting was done in an attempt to test this and other hypotheses, but the results crc inconclusive. Gravity results strongly suggest a normal fault, and if normal faulting is the case, the reflections from beneath the outcropping basement are possibly derived from shear zones, Some probable 'reflected refractions' were also observed. There is scope for further seismic testing but it is considered that conclusive evidence could only be provided by drilling.