From 1 - 10 / 192
  • Victorian 2009 Bushfires Research Response Final Report October 2009

  • Severe wind damage accounts for about 40 percent of the total building damage observed in Australia during the 20th century. Climate change has the potential to significantly affect severe wind hazard and the resulting level of loss. W report on a nationally consistent assessment of severe wind hazard across the Australian continent, and also severe wind risk to residential houses (quantified in terms of annualised loss). A computational framework has been developed to quantify both the wind hazard and risk due to severe winds, based on innovative modeling techniques and application of the National Exposure Information System (NEXIS). A combination of tropical cyclone, synoptic and thunderstorm wind hazard estimates is used to provide a revised estimate of the severe wind hazard across Australia. The hazard modeling utilises both 'current climate' information and also simulations forced by IPCC SRES climate change scenarios (employed to estimate how the wind hazard may be influenced by climate change). Our analysis has identified regions where the design wind speed depicted in the Australian/New Zealand Wind Loading Standard (AS/NZS 1170.2, 2010) is lower than 'new' hazard analysis. In considering future climate scenarios, four case study regions are used to illustrate when the wind loading standard may be inadequate, and where retrofitting is indicated as a viable adaptation option at either the present or at a specified future time. The comparison of current and projected future risk, currently only considers direct costs (structural damage to houses) associated with severe wind hazard. A broader assessment methodology is discussed.

  • Climate change is expected to increase severe wind hazard in many regions of the Australian continent with consequences for exposed infrastructure and human populations. The objective of this study is to provide a nationally consistent assessment of wind risk under current climate and to provide preliminary indications of the effects (impact) of future hazard under several climate change scenarios. This is being undertaken by considering wind hazard, infrastructure exposure and wind vulnerability of infrastructure (residential buildings). The National Wind Risk Assessment (NWRA) will identify communities subject to high wind risk under present climate, and which will be most susceptible to any climate change related exacerbation of local wind hazard. While there is significant uncertainty on what the likelihood of extreme winds will be in the future, the understanding of current local wind hazard for the Australian region is also in need of improvement. Australian wind hazard is based on the statistical analysis of extreme wind observations and engineering judgement. Observations include peak 3-second gusts captured at about 30 meteorological measurement stations, mainly located at significant city and regional airports. These provide poor spatial texture with regard to wind hazard. This study is taking advantage of modelled wind hazard assessments (current climate) being developed at Geoscience Australia utilising separate techniques for the three main wind hazards: tropical cyclones; thunderstorms; and synoptic winds. A stochastic model based on observed and modelled cyclone tracks is used to obtain an understanding of cyclonic wind hazard, whilst two statistical approaches involving observed and modelled vertical instability and mean wind speed fields (via high-resolution regional climate model) are the basis for the thunderstorm and synoptic wind hazard.

  • The impacts of climate change, including sea level rise and the increased frequency of storm surge events, will adversely affect infrastructure in a significant number of Australian coastal communities. In order to quantify this risk, Geoscience Australia in collaboration with the Department of Climate Change and Energy Efficiency, have undertaken a first-pass national assessment which has identified the extent and value of infrastructure that are potentially vulnerable to impacts of climate change. We have utilised the best available national scale information to assess the vulnerability of Australia's coastal zone to the impacts of climate change. In addition to assessing coastal vulnerability assuming the current population, we also examined the changes in exposure under a range of future population scenarios provided by the Australian Bureau of Statistics. Continuation of the current trend for significant development in the coastal zone increases the number and value of residential buildings potentially vulnerable by 2100. We found that over 270,000 residential buildings are potentially vulnerable to the combined impacts of inundation and recession by 2100. This equates to a replacement value of approximately AUD$72 billion. Nearly 250,000 residential buildings were found to be potentially vulnerable to inundation only, which equates to AUD$64 billion. Queensland and New South Wales have the largest vulnerability (considering both value and number of buildings affected). Nationally, approximately 33,000 km of road and 1,500 km of rail infrastructure are potentially at risk by 2100. These results are influencing policy and adaptation planning decisions made by federal, state and local government.

  • INFORMING NATURAL HAZARD RISK MITIGATION THROUGH A RELIABLE DEFINITION OF EXPOSURE Krishna Nadimpalli, Mark Edwards, Mark Dunford Risk & Impact Analysis Group, Geoscience Australia GPO Box 378, Canberra, ACT 2601, Australia, krishna.nadimpalli@ga.gov.au Fundamental to any risk assessment is an understanding of the infrastructure and people exposed to the hazard under consideration. In Australia there is presently no nationally consistent exposure database that can provide this information. The need to better understand risk was recognised in the report on natural disaster relief and mitigation arrangements made to the Council of Australian Governments (COAG) in 2003. The report included a recommendation to develop and implement a five-year national program of systematic and rigorous disaster risk assessments. In response to this Geoscience Australia (GA) is undertaking a series of national risk assessments for a range of natural hazards. This work is being underpinned by a parallel development of a national definition of community exposure called the National Exposure Information System (NEXIS). The NEXIS aims to provide nationally consistent and best available exposure information at the building level. The building types considered are residential, business (commercial and industrial), and ancillary (educational, government, community, religious, etc.). NEXIS requires detailed spatial analysis and integration of available demographic, structural and statistical data. Fundamentally, this system is being developed from several national spatial datasets as a generic approach with several assumptions made to derive meaningful information. NEXIS is underpinning scenarios and risk assessments for various hazards. Included are earthquakes, cyclones, severe synoptic wind, tsunami, flood and technogenic critical infrastructure failure. The NEXIS architecture is completed and the system currently provides residential exposure information nationally. The prototype for business exposure is well developed and a national definition of business exposure will be generated by June 2008. Ancillary buildings and various critical infrastructure sector exposures will be incorporated into the future. While the present approach is largely generic, more specific building and socio-economic information will be incorporated as new datasets or sources of information become available. Opportunities also exist for NEXIS to be integrated with early warning and alert systems to provide real time assessments of damage or to forecast the impact for a range of hazards. This paper describes the methodologies used by NEXIS and how these will be advanced in the future to provide a more complete and specific definition of exposure to inform severe hazard risk assessment, risk mitigation and post event response.

  • Living with bushfires is a part of life for many Australians. However, bushfire can cause significant losses to economic, social, and environmental assets and values. Decisions about mitigating the harmful impacts of fires on assets and values, as well as operational management of fires, are critical. A Bushfire Risk Assessment Framework (BRAF) is being developed as an output for the Bushfire Cooperative Research Centre (BCRC) project Fire Impact & Risk Evaluation Decision Support Tool (FIRE-DST). The framework will incorporate the computational framework being developed in the FIRE-DST project. The primary driver for the framework is to assist the development of improved, consistent information on bushfire risk that supports effective bushfires risk management. The framework will be designed to encompass the outcomes of other BCRC research projects. It will support various national initiatives such as the NSDR and the Climate Change Adaptation Framework and will address issues arising from the Victorian Bushfires Royal Commission and the 2004 report to COAG 'Report of the National Inquiry on Bushfire Mitigation and Management'. This COAG report examined risk management but did not examine the risk assessment methodology. BRAF focuses on impact and risk assessment for severe and extreme fires. Financial, socio-economic, casualty, political and environmental risks arising from bushfires will be covered by the framework. Roles in the framework are described for a number of stakeholders including jurisdictional agencies, national committees and non government organisations including the private sector and peak industry bodies.

  • Results from an audit of 32 petroleum exploration wells in the Bass Basin have shown that approximately half of the wells in the basin were invalid tests due to off-structure drilling or mis-interpretation. Of the remaining wells, primary reasons for failure were lack of effective seal, timing, trap validity, lack of access to mature source rocks or reservoir problems. In parts of the basin the regional seal (Demons Bluff Shale) has undergone a period of structural inversion during the late Tertiary resulting in seal breach. Anticlinal closures of Eocene age were particularly affected, while structures located on fault-bounded basement highs were less affected, and provide the only fields within the basin. In the Yolla and White Ibis fields, access to mature source rocks was provided by large-displacement, non-sealing faults, that linked the upper EVG reservoirs with deeper source rocks. Traps without this conduit have as yet been unsuccessful. Sandy units within the Eastern View Group in the Pelican Trough are tight reservoirs that have good porosity but poor permeability. This is due to diagenetic effects that prohibited the creation of secondary porosity and permeability. Although identified risks within the basin can be minimised, the key to successful exploration will be finding traps that were in-place prior to the generation of hydrocarbons, but did not undergo significant Tertiary inversion.

  • FIRE-DST is the largest of the projects within the extended Bushfire Cooperative Research Centre (BCRC). It is addressing the sub-theme of evaluating risk by developing a framework and computational methodology for evaluating the impacts and risks of extreme fire events on regional and peri-urban populations (infrastructure and people) applicable to the Australian region. The research is considering three case studies of recent extreme fires employing an ensemble approach (sensitivity analysis) which varies the meteorology, vegetation and ignition in an effort to estimate fire risk to the case-study fire area and adjacent region. Outcomes from recent extreme fires have demonstrated a need for a tool to assess future bushfire impacts and risk on regional and peri-urban communities. Such a tool would illustrate (map) bushfire impact and risk across the urban fringe and will also enable fire and land management authorities to develop and assess the effect of appropriate fire risk treatment options at local, regional and national levels. The tool would also characterise vegetation, extreme fire weather, firespread, smoke production and dispersion, and estimate the consequences of extreme fires on communities. As well as being validated using conditions pertaining at the time of the case study events, the tool will be used to explore alternative scenarios reflecting the sensitivity in ignition, fuel load and state, meteorology and fire spread, as well as alternative suppression strategies. Results from these scenario analyses and associated reports and papers will be communicated via the project website and through structured workshops.

  • Samples of primary-treated effluent were examined by laser particle sizer, photographic image-analysis and in settling/rinsing experiments in order to determine particle sizes and falling/rising speeds through seawater. Using a 1.7 m column and 24 h experiments, it was found that approximately 22% of the particles settle out of suspension, 3% rise to the surface and 75% remain in suspension. Between 80 and 100% of the falling particles reach the bottom in less than 6 h.A good correlation (r=0.95) was found between the cumulative mass of particles at the base of a settling column and particle falling velocity. In contrast, a poor correlation (r=0.57) was found between median particle size and falling velocity. The falling particle sizes did not follow a log-normal distribution as might be expected. This is probably explained by the fact that larger particles are composed of flocculated material and vary in density from the smaller particles. Particles with a diameter of < 80 m make up 90% of the mass of material that sinks.A fairly good correlation was found between percent cumulative mass and rising velocity (r=0.74). However, the relationship between particle size and rising velocity is more complex. There are three main categories of rising particles: < 52 m; between 52 and 150 m; and those with an average size > 150 m. The smallest class of particles (< 52 m) are by far the most abundant, comprising on average 95% of the total number of rising particles. The small particles show a weak logarithmic relationship between size and rising velocity (r=0.53). The mid-size particles (52-150 m) comprise approximately 4% of the total number of particles and are the most difficult to categorize as there appears to be no relationship between particle size and rising velocity. The large size particles, although the least abundant (~ 1%), are the most predictable; there is a good correlation between particle size and rising velocity (r=0.77). This is probably because the particles are fairly homogeneous and largely composed of oil and grease.

  • Australian building codes through the Australia/New Zealand Wind Actions Standard as well as the wind engineering community in general rely to a significant extent on the peak wind gust speed observations collected over more than 60 years by the Bureau of Meteorology (BoM). The current wind loading code and the performance of our infrastructure (residential, commercial, industrial and critical infrastructure) is based primarily on the Dines anemometer interpretation of the peak gust wind speed. In the early 1990's BoM commenced a program to replace the aging pressure tube Dynes anemometer with the Synchrotac and Almos cup anemometers. As of October 2008 only six Dynes anemometers remain in operation.