From 1 - 10 / 56
  • In addition to typical seafloor VHMS deposits, the ~3240 Ma Panorama district contains contemporaneous greisen- and vein-hosted Mo-Cu-Zn-Sn occurrences that hosted by the Strelley granite complex, which drove VHMS circulation. High-temperature alteration zones in volcanic rocks underlying the VHMS deposits are dominated by quartz-chlorite±albite assemblages, with lesser low-temperature quartz-sericite±K-feldspar assemblages, typical of VHMS hydrothermal systems. Alteration assemblages associated with granite-hosted greisens and veins, which do not extend into the overlying volcanc pile, include quartz-topaz-muscovite-fluorite and quartz-muscovite(sericite)-chlorite-ankerite. Fluid inclusion and stable isotope data suggest that the greisens formed from high temperature (~590C), high salinity (38-56 wt % NaCl equiv) fluids with high densities (>1.3 g/cm3) and high -18O (9.3±0.6-), which are compatible with magmatic fluids evolved from the Strelley granite complex. Fluids in the volcanic pile (including the VHMS ore-forming fluids) were of lower temperature (90-270C), lower salinity (5.0-11.2 wt % NaCl equiv), with lower densities (0.88-1.01 g/cm3) and lower -18O (-0.8±2.6), compatible with evolved Paleoarchean seawater. Fluids that formed the quartz-chalcopyrite-sphalerite-cassiterite veins, which are present within the upper granite complex, were intermediate in temperature and isotopic composition (T = 240-315C; -18O = 4.3±1.5-) and are interpreted to indicate mixing between the two end-member fluids. Evidence of mixing between evolved seawater and magmatic-hydrothermal fluid in the granite complex, along with a lack of evidence for a magmatic component in fluids from the volcanic pile, suggest partitioning of magmatic-hydrothermal from evolved seawater hydrothermal systems in the Panorama VHMS system, interpreted as a consequence swamping of the system by evolved seawater or density contrasts.

  • Paleoarchean rocks of the tonalite-trondhjemite-granodiorite (TTG) series require a basaltic source region more enriched in K, LILE, Th and LREE than the low-K tholeiites typical of Archean supracrustal sequences. Most TTG of the Pilbara Craton, in northwestern Australia, formed between 3.5 and 3.42 Ga through infracrustal melting of a source older than 3.5 Ga. Basaltic to andesitic rocks of the 3.51 Ga Coucal Formation, at the base of the Pilbara Supergroup, are amongst the only well-preserved remnants of pre-3.5 Ga supracrustal material on Earth, and may have formed a large proportion of pre-3.5 Ga Pilbara crust. These rocks are significantly enriched in K, LILE, Th and LREE compared to post-3.5 Ga Paleoarchean basalts and andesites, and form a compositionally suitable source for TTG. Enrichment in these basalts was not the result of crustal assimilation but was inherited from a mantle source that was less depleted than modern MORBsource and was enriched in recycled crustal components.We suggest that the formation of Paleoarchean TTG and of their voluminous mafic source regions reflects both a primitive stage in the thermal and compositional evolution of the mantle and a significant prehistory of crustal recycling.

  • Natural gas is Australia's third largest energy resource after coal and uranium but despite this economic importance, the gas origin is not always recognized. To address this, isotope and geochemistry data have been collated on 850 natural gases from all of Australia's major gas provinces with proposed source ages spanning the earliest Paleozoic to the Cenozoic. Unaltered natural gases have a thermogenic origin ('13C methane ranges between -49 and -27'; 'D methane ranges between -290 and -125'). Microbially altered natural gases were identified primarily on the basis of 13C and D enrichments in propane and/or 13C depletion in methane and/or 13C enrichment in CO2. The carbon isotopic composition of the gas source has been estimated using '13C iso-butane as a surrogate for '13C kerogen while for gases where biodegradation is moderate to severe, '13C neo-pentane provides an alternative measure. The '13C kerogen of gas source rocks range from -47 to -22' with the older Paleozoic sources and marine kerogen amongst the most depleted in 13C. The '13C CO2 also provides an insight into crustal- and mantle-derived components while '15N N2 (-6.0 to 2.3' for N2 up to 47 %) distinguish between organic and inorganic (groundwater) inputs. This dataset provides a better understanding on the source and preservation history of Australian gas accumulations with direct implications on improving exploration success.

  • The Brattstrand Paragneiss, a highly deformed Neoproterozoic granulite-facies metasedimentary sequence, is cut by three generations of ~500 Ma pegmatite. The earliest recognizable pegmatite generation, synchronous with D2-3, forms irregular pods and veins up to a meter thick, which are either roughly concordant or crosscut S2 and S3 fabrics and are locally folded. Pegmatites of the second generation, D4, form planar, discordant veins up to 20-30 cm thick, whereas the youngest generation, post-D4, form discordant veins and pods. The D2-3 and D4 pegmatites are abyssal class (BBe subclass) characterized by tourmaline + quartz intergrowths and boralsilite (Al16B6Si2O37); the borosilicates prismatine, grandidierite, werdingite and dumortierite are locally present. In contrast, post-D4 pegmatites host tourmaline (no symplectite), beryl and primary muscovite and are assigned to the beryl subclass of the rare-element class. Spatial correlations between B-bearing pegmatites and B-rich units in the host Brattstrand Paragneiss are strongest for the D2-3 pegmatites and weakest for the post-D4 pegmatites, suggesting that D2-3 pegmatites may be closer to their source. Initial 87Sr/86Sr (at 500 Ma) is high and variable (0.7479-0.7870), while -Nd500 tends to be least evolved in the D2-3 pegmatites (-8.1 to -10.7) and most evolved in the post-D4 pegmatites (-11.8 to -13.0). Initial 206Pb/204Pb and 207Pb/204Pb and 208Pb/204Pb ratios, measured in acid-leached alkali feldspar separates with low U/Pb and Th/Pb ratios, vary considerably (17.71-19.97, 15.67-15.91, 38.63-42.84), forming broadly linear arrays well above global Pb growth curves. The D2-3 pegmatites contain the most radiogenic Pb while the post-D4 pegmatites have the least radiogenic Pb; data for D4 pegmatites overlap with both groups. Broad positive correlations for Pb and Nd isotope ratios could reflect source rock compositions controlled two components. Component 1 (206Pb/204Pb-20, 208Pb/204-43, Nd -8) most likely represents old upper crust with high U/Pb and very high Th/Pb. Component 2 (206Pb/204Pb -18, 208Pb/204Pb~38.5, -Nd500 -12 to -14) has a distinctive high-207Pb/206Pb signature which evolved through dramatic lowering of U/Pb in crustal protoliths during the Neoproterozoic granulite-facies metamorphism. Component 1, represented in the locally-derived D2-3 pegmatites, could reside within the Brattstrand Paragneiss, which contains detrital zircons up to 2.1 Ga old and has a wide range of U/Pb and Th/Pb ratios. The Pb isotope signature of component 2, represented in the 'far-from-source' post-D4 pegmatites, resembles feldspar Pb isotope ratios in Cambrian granites intrusive into the Brattstrand Paragneiss. However, given their much higher 87Sr/86Sr, the post-D4 pegmatite melts are unlikely to be direct magmatic differentiates of the granites, although they may have broadly similar crustal sources. Correlation of structural timing with isotopic signatures, with a general sense of deeper sources in the younger pegmatite generations, may reflect cooling of the crust after Cambrian metamorphism.

  • Metallogenic, geologic and isotopic data indicate secular changes in the character of VHMS deposits relate to changes in tectonic processes, tectonic cycles, and changes in the hydrosphere and atmosphere. The distribution of these deposits is episodic, with peaks at 2740-2680 Ma, 1910-1840 Ma, 510-460 Ma and 370-355 Ma that correspond to the assembly of Kenorland, Nuna, Gondwana and Pangea. Quiescent periods of VHMS formation correspond to periods of supercontinent stability. Large ranges in source 238U/204Pb that characterize VHMS deposits in the Archean and Proterozoic indicate early (Hadean to Paleoarchean) differentiation. A progressive decrease in - variability suggests homogenisation with time of these differentiated sources. Secular increases in the amount of lead and decreases in 100Zn/(Zn+Pb) relate to an increase in felsic-dominated sequences as hosts to deposits and an absolute increase in the abundance of lead in the crust with time. The increase in sulfate minerals in VHMS deposits from virtually absent in the Meso- to Neoarchean to relatively common in the Phanerozoic relates to oxidation of the hydrosphere. Total sulfur in the oceans increased, resulting in an increasingly important contribution of seawater sulfur to VHMS ore fluids with time. Most sulfur in Archean to Paleoproterozoic deposits was derived by leaching rocks below deposits, with little contribution from seawater, resulting in uniform, near-zero-permil values of 34Ssulfide. In contrast the more variable values of younger deposits reflect the increasing importance of seawater sulfur. Unlike Meso- to Neoarchean deposits, Paleoarchean deposits contain abundant barite, which is inferred to have been derived from photolytic decomposition of atmospheric SO2 and does not reflect overall oxidised oceans. Archean and Proterozoic seawater was more salty than Phanerozoic, particularly upper Phanerozoic, seawater. VHMS fluids ore fluids reflect this, also being saltier in Precambrian deposits.

  • The oxygen isotopic record obtained from Globigerina bulloides, Globorotalia inflata, and Neogloboquadrina pachyderma (s.) was analysed for 5 sediment traps moored in the Southern Ocean and Southwest Pacific. The traps extend from Subtropical to the Polar Frontal environments, providing the first analysis of seasonal foraminiferal d18O records from these latitudes. Comparison between the foraminiferal records and various equations for predicted d18O of calcite reveals that the predicted d18O is best captured by the equations of Epstein et al. (1953) [Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C., 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin 64, 1315-1326.] and Kim and O'Neil (1997) [Kim, S.-T., O'Neil, J.R., 1997. Equilibrium and non-equilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61, 3461-3475.]. The Epstein equation shows a constant offset from the -18O of G. bulloides and N. pachyderma (s.) across the full range of latitudes. The seasonal range in -18O values for these two species implies a near-surface habitat across all sites, while G. inflata most likely dwells at 50 m depth. A significant finding in this study was that offsets from predicted -18O for G. bulloides do not correlate to changes in the carbonate ion concentration. This suggests that [CO32-] in and of itself may not capture the full range of carbonate chemistry conditions in the marine system. This sediment trap deployment also reveals distinct seasonal flux patterns for each species. Comparison between flux-weighted isotopic values calculated from the sediment traps and the isotopic composition of nearby surface sediments indicates that the sedimentary records retain this seasonal imprint. At the 51°S site, G. bulloides has a spring flux peak while N. pachyderma (s.) is dominated by summer production.

  • Aspects of the tectonic history of Paleo- to Mesoproterozoic Australia are recorded by metasedimentary basins in the Mt Isa, Etheridge Provinces, and Coen Inlier in northern Australia and in the Curnamona Province of southern Australia. These deformed and metamorphosed basins are interpreted to have been deposited in a tectonically-linked system based on similarities in depositional ages and stratigraphy (Giles at al 2002). Neodymium isotope compositions of sediments and felsic volcanics, when combined with U-Pb geochronology, are independent data that are important tools for inferring tectonic setting, palaeogeography and sediment provenance in deformed and metamorphosed terrains.

  • The New England Orogen contains a geological record dominated by subduction-related rocks, indicating that the orogen has been part of, or adjacent to, convergent plate margins of eastern Gondwanaland from at least the Cambrian until the end of the Early Cretaceous (~95 Ma). In the late Devonian, the orogen records the change from an island arc setting to an Andean-style convergent continental plate margin (e.g., Flood & Aitchison 1992; Skilbeck and Cawood, 1994). The rock record prior to the Middle Devonian is fragmentary, but the Late Devonian to Carboniferous components of the continental margin magmatic arc, forearc basin and accretionary wedge system are well preserved in the New England Orogen, with the Lachlan Orogen, Thomson Orogen and Drummond Basin to the west being in a backarc setting at this time. This system ended in the Late Carboniferous, with the subduction zone stepping to the east (Cawood, 1984). Nevertheless, until at least the Early Cretaceous, the Australian component of the continental margin of East Gondwanaland faced the Proto-Pacific (Panthalassan) Ocean, and has been interpreted to form part of a subduction-related convergent plate margin (e.g. Powell 1984; Cawood 2005; Glen 2005). Here, we examine aspects of the southern New England Orogen from the Cambrian to the Early Permian to further document the nature of the convergent plate margin over this period of time. We are interested especially in the Tamworth Belt, where the changeover is recorded from the Cambrian-Late Devonian island arc setting, to the development of the Devonian-Carboniferous continental margin in a convergent plate setting, with its well developed forearc basin and accretionary wedge. The island arc component is referred to as the Gamilaroi Terrane by Aitchison and Flood (1995) and Offler and Gamble (2002).

  • This is a collection of conference program and abstracts presented at AOGC 2010, Canberra.

  • S-type granites crop out extensively (>2500 km2) in the central and eastern parts of the Hodgkinson Province, north Queensland, Australia, forming two NW to NNW trending belts, outboard of an extensive belt of (mainly late Carboniferous) I-type granites. The S-type granites, which comprise muscovite-biotite syenogranite and monzogranite, and rare granodiorite, have been subdivided in two major supersuites: the Whypalla and Cooktown Supersuites; and a number of minor suites - including the highly differentiated Wangetti and Mount Alto Suites. The S-type granites intrude a very extensive, siliciclastic flysch sequence (late Silurian? to earliest Carboniferous) that is isotopically evolved (e.g., Nd mostly -12.0 to -15.0 at 270 Ma), and generally too mature (too CaO poor) to produce S-type granites. Isotopic and chemical modeling show that although magma-mixing is permissible, the levels permissible (<ca 20-25% basaltic input), are not large enough to explain the signature of the S-type granite. Either more complex mixing models, e.g., crustal melts with a history of mixing, or the presence of more suitable metasedimentary source rocks at depth, is required. The latter is consistent with the (uncommon) presence within the eastern parts of the Hodgkinson Province of metasediments with isotopic signatures similar to the S-type granites. These provide strong support for more extensive such rocks at depth, consistent with other local geology and accretionary tectonic models for the region.