From 1 - 10 / 28
  • This report presents key results from the Upper Burdekin Groundwater Project conducted as part of Exploring for the Future (EFTF)—an eight year Australian Government funded geoscience data and information acquisition program. The first four years of the Program (2016–20) aimed to better understand the potential mineral, energy and groundwater resources in northern Australia. The Upper Burdekin Groundwater Project focused on the McBride Basalt Province (MBP) and Nulla Basalt Province (NBP) in the Upper Burdekin region of North Queensland. It was undertaken as a collaborative study between Geoscience Australia and the Queensland Government. This document reports the key findings of the project, as a synthesis of the hydrogeological investigation project and includes maps and figures to display the results.

  • <p>Geoscience Australia (GA) generated a series of gravity and magnetic grids and enhancements covering Northern Australia. Several derivative gravity datasets have been generated 1) for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E), 2) for the Northern Territory (approximately between latitudes 7‒26⁰ S and longitudes 125.5‒141⁰ E) and for Queensland (approximately between latitudes 7‒30⁰ S and longitudes 135‒160⁰ E). The magnetic dataset has been generated only for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E). The magnetic and gravity data were downloaded from the Geophysical Archive Data Delivery System (GADDS), website (http://www.geoscience.gov.au/cgi-bin/mapserv?map=/nas/web/ops/prod/apps/mapserver/gadds/wms_map/gadds.map&mode=browse). Satellite Free-air (FA) gravity v27.1 (released March 11, 2019) and Satellite Topography v19.1 (released January 14, 2019) data were sourced from Sandwell et al. (2014) and downloaded from the Scripps Institution of Oceanography (SIO), National Oceanic and Atmospheric Administration (NOAA), U.S. Navy and National Geospatial-Intelligence Agency (NGA) (SIO Satellite Geodesy, website, http://topex.ucsd.edu/WWW_html/mar_grav.html). The Satellite Bouguer gravity grid with onshore correction density of 2.67 gcm-3 and offshore correction density of 2.20 gcm-3 was derived from the Free-air gravity v27.1 and Topography data V19.1. This Bouguer gravity grid was used for filling areas of data gaps in the offshore region. <p>Data evaluation and processing of gravity and magnetic data available in the area of interest resulted in the production of stitched onshore-offshore Bouguer gravity grid derived from offshore satellite Bouguer gravity grid and GA’s onshore ground and airborne gravity survey data and a stitched Total Magnetic Intensity (TMI) grid derived from airborne and shipborne surveys (Tables 1 and 5). A Reduction to the Pole (RTP) grid was derived from the stitched TMI grid. The TMI, RTP, FA and terrain corrected Bouguer gravity anomalies are standard datasets for geological analysis. The free-air gravity anomaly provides the raw and basic gravity information. Images of free-air gravity are useful for first-pass interpretation and the data is used for gravity modelling. Magnetic anomalies provide information on numerous magnetic sources, including deep sources as arising from the structure and composition of magnetic basement and shallow sources such as intra-sedimentary magnetic units (e.g. volcanics, intrusions, and magnetic sedimentary layers). A standard TMI image will contain information from all these sources. Geosoft Oasis montaj software was used throughout the data processing and enhancement procedure and the montaj GridKnit module was used to generate the stitched gravity and magnetic grids. <p>Enhancement techniques have been applied to the final processed Bouguer gravity and RTP magnetic grids to highlight subtle features from various sources and to separate anomalies from different source depths. These enhancement techniques are described in the next section. <p>Enhancement processing techniques and results <p>A summary of image processing techniques used to achieve various outcomes is described in Table 1. <p>Data type Filter applied Enhancement/outcome <p>Gravity/Magnetic First vertical derivative (1VD) Near surface features (e.g. intrabasinal) <p>Gravity/Magnetic Upward continuation Noise reduction in data <p>Gravity/Magnetic Low pass filter, or large distance upward continuation Enhancement of deep features (e.g. basement) <p>Gravity/Magnetic High pass filter Enhancement of shallow features (e.g. surface anomalies) <p>Gravity/Magnetic Tilt filter and 1VD Enhancement of structure (e.g. in basement) <p>Gravity/Magnetic ZS-Edgezone and ZS-Edge filters Enhancement of edges <p>Gravity/Magnetic horizontal modulus / horizontal gradient Enhancement of boundaries <p>Magnetic RTP (reduction to the pole), Compound Anomaly, and Analytic Signal filter Accurate location of sources

  • To meet the increasing demand for natural resources globally, industry faces the challenge of exploring new frontier areas that lie deeper undercover. Here, we present an approach to, and initial results of, modelling the depth of four key chronostratigraphic packages that obscure or host mineral, energy and groundwater resources. Our models are underpinned by the compilation and integration of ~200 000 estimates of the depth of these interfaces. Estimates are derived from interpretations of newly acquired airborne electromagnetic and seismic reflection data, along with boreholes, surface and solid geology, and depth to magnetic source investigations. Our curated estimates are stored in a consistent subsurface data repository. We use interpolation and machine learning algorithms to predict the distribution of these four packages away from the control points. Specifically, we focus on modelling the distribution of the base of Cenozoic-, Mesozoic-, Paleozoic- and Neoproterozoic-age stratigraphic units across an area of ~1.5 million km2 spanning the Queensland and Northern Territory border. Our repeatable and updatable approach to mapping these surfaces, together with the underlying datasets and resulting models, provides a semi-national geometric framework for resource assessment and exploration. <b>Citation:</b> Bonnardot, M.-A., Wilford, J., Rollet, N., Moushall, B., Czarnota, K., Wong, S.C.T. and Nicoll, M.G., 2020. Mapping the cover in northern Australia: towards a unified national 3D geological model. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The Upper Burdekin Chloride Mass Balance Recharge web service depicts the recharge rates have been estimated at borehole locations in the Nulla and McBride basalt provinces. Using rainfall rates, rainfall chemistry and groundwater chemistry, the recharge rates have been estimated through the Chloride Mass Balance approach.

  • <p>Dataset "Detailed surface geology – Upper Burdekin basalt provinces", downloaded from the Queensland Spatial Catalogue in April 2017 and clipped to the Upper Burdekin basalt provinces. <p>The polygons in this dataset are a digital representation of the distribution or extent of geological units within the area. Polygons have a range of attributes including unit name, age, lithological description and an abbreviated symbol for use in labelling the polygons. These have been extracted from the Rock Units Table held in Department of Natural Resources and Mines MERLIN Database. <p>© State of Queensland (Department of Natural Resources and Mines) 2017 Creative Commons Attribution

  • The Cloncurry Extension Magnetotelluric (MT) Survey is located north of the township of Cloncurry, in the Eastern Succession of the Mount Isa Province. The survey expands MT coverage to the north and west of the 2016 Cloncurry MT survey. The survey was funded out of the Queensland Government’s Strategic Resources Exploration Program, which aims to support discovery of mineral deposits in the Mount Isa Region. The survey area is predominantly covered by conductive sediments of the Carpentaria Basin. The cover thickness ranges from zero metres in the extreme south west of the survey, to over 345 meters in the north. Acquisition started in August 2019 and was completed in October 2020. The acquisition was managed under an collaborative framework agreement between the Geological Survey of Queensland and Geoscience Australia until April 2020, after which the GSQ took over management of the project. Zonge Engineering and Research Organization were responsible for field acquisition. Data were collected at 2 km station spacing on a regular grid with a target bandwidth of 0.0001 – 1000 s. Instruments were left recording for a minimum of 24 hours unless disturbed by animals. The low signal strength posed a significant impediment for acquiring data to 1000 s, even with the 24 hour deployments. Almost all sites have data to 100 s, with longer period data at numerous sites.

  • <p>The outcrop extent of the McBride Basalt Province, selected from the Queensland Detailed Surface Geology vector polygon mapping, March 2017. <p>© State of Queensland (Department of Natural Resources and Mines) 2017 Creative Commons Attribution

  • This data release presents regional scale groundwater contours developed for the Upper Burdekin Groundwater Project in North Queensland, conducted as part of Exploring for the Future (EFTF), an Australian Government funded geoscience data and information acquisition program. The four-year (2016-20) program focused on better understanding the potential mineral, energy and groundwater resources in northern Australia. The Upper Burdekin Groundwater Project is a collaborative study between Geoscience Australia and the Queensland Government. It focuses on basalt groundwater resources in two geographically separate areas: the Nulla Basalt Province (NBP) in the south and the McBride Basalt Province (MBP) in the north. This data release includes separate, regional-scale groundwater contour datasets for the Nulla and McBride basalt provinces developed by Geoscience Australia in: Cook, S. B. & Ransley, T. R., 2020. Exploring for the Future—Groundwater level interpretations for the McBride and Nulla basalt provinces: Upper Burdekin region, North Queensland. Geoscience Australia, Canberra, http://pid.geoscience.gov.au/dataset/ga/135439. As detailed in that document, the groundwater contours were drawn by hand based on: - Groundwater levels from monitoring bores measured mostly on 17 February 2019 following extensive rainfall. - Surface topography. - Surface water features (rivers and springs). - Remote sensing data. The inferred groundwater contours were used in various Upper Burdekin Groundwater Project components to frame hydrogeological discussions. It is important to note that they were drawn following a wet period; groundwater contours are temporally variable and those presented in this data release therefore only represent part of the regional groundwater flow system.

  • The Cooper Basin is Australia's premier onshore hydrocarbon producing province and hosts a range of conventional and unconventional gas play types. This study investigates the petroleum generation potential of the basin's major Permian source rocks, to improve regional understanding of the basin's hydrocarbon prospectivity. Source rock distribution, thickness, present-day amount of total organic carbon (TOC), quality (Hydrogen Index) and maturity were mapped across the basin, together with original source quality maps prior to the on-set of generation. Results of the source rock property mapping and basin-specific kinetics were integrated with 1D burial and thermal history models and a 3D basin model to create a regional pseudo-3D petroleum system model for the basin. The modelling outputs quantify the spatial distribution of both the maximum possible hydrocarbon yield, as well as the oil/ gas expelled and retained, for ten Permian source rocks. Monte Carlo simulations were used to quantify the uncertainty associated with hydrocarbon yields and to highlight the sensitivity of results to each input parameter. The principal source rocks are the Permian coal and coaly shales of the Gidgealpa Group, with highest potential yields from the Patchawarra Formation coals and coaly shales. The broad extent of the Cooper Basin's Permian source kitchen and its large total generation potential (P50 scenario >2000 bboe) highlights the basin¿s significance as a world-class hydrocarbon province. The difference between the P90 (~800 bboe) and P10 (>4000 bboe) scenarios demonstrate the range of uncertainties inherent in this modelling.

  • The Great Artesian Basin Research Priorities Workshop, organised by Geoscience Australia (GA), was held in Canberra on 27 and 28 April 2016. Workshop attendees represented a spectrum of stakeholders including government, policy, management, scientific and technical representatives interested in GAB-related water management. This workshop was aimed at identifying and documenting key science issues and strategies to fill hydrogeological knowledge gaps that will assist federal and state/territory governments in addressing groundwater management issues within the GAB, such as influencing the development of the next Strategic Management Plan for the GAB. This report summarises the findings out of the workshop.