Environmental
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
The Historical Bushfire Boundaries service represents the aggregation of jurisdictional supplied burnt areas polygons stemming from the early 1900's through to 2022 (excluding the Northern Territory). The burnt area data represents curated jurisdictional owned polygons of both bushfires and prescribed (planned) burns. To ensure the dataset adhered to the nationally approved and agreed data dictionary for fire history Geoscience Australia had to modify some of the attributes presented. The information provided within this service is reflective only of data supplied by participating authoritative agencies and may or may not represent all fire history within a state.
-
This Sydney Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Sydney Basin, part of the Sydney–Gunnedah–Bowen basin system, consists of rocks dating from the Late Carboniferous to Middle Triassic periods. The basin's formation began with extensional rifting during the Late Carboniferous and Early Permian, leading to the creation of north-oriented half-grabens along Australia's eastern coast. A period of thermal relaxation in the mid Permian caused subsidence in the Bowen–Gunnedah–Sydney basin system, followed by thrusting of the New England Orogen from the Late Permian through the Triassic, forming a foreland basin. Deposition in the basin occurred in shallow marine, alluvial, and deltaic environments, resulting in a stratigraphic succession with syn-depositional folds and faults, mostly trending north to north-east. The Lapstone Monocline and Kurrajong Fault separate the Blue Mountains in the west from the Cumberland Plain in the central part of the basin. The Sydney Basin contains widespread coal deposits classified into geographic coalfield areas, including the Southern, Central, Western, Newcastle, and Hunter coalfields. These coalfields are primarily hosted within late Permian strata consisting of interbedded sandstone, coal, siltstone, and claystone units. The coal-bearing formations are grouped based on sub-basins, namely the Illawarra, Tomago, Newcastle, and Wittingham coal measures, underlain by volcanic and marine sedimentary rocks. Deposition within the basin ceased during the Triassic, and post-depositional igneous intrusions (commonly of Jurassic age) formed sills and laccoliths in various parts of the basin. The maximum burial depths for the basin's strata occurred during the early Cretaceous, reaching around 2,000 to 3,000 metres. Subsequent tectonic activity associated with the Tasman Rift extension in the Late Cretaceous and compressional events associated with the convergence between Australia and Indonesia in the Neogene led to uplift and erosion across the basin. These processes have allowed modern depositional environments to create small overlying sedimentary basins within major river valleys and estuaries, along the coast and offshore, and in several topographic depressions such as the Penrith, Fairfield and Botany basins in the area of the Cumberland Plain.
-
This Money Shoal Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Money Shoal Basin is a large passive margin basin in northern Australia, mainly located in the offshore Arafura Sea. Its sedimentary succession spans from the Mesozoic to the Cenozoic era, reaching a maximum thickness of 4,500 m in the northwest but thinner, less than 500 m, in central and eastern areas. The basin overlays the Neoproterozoic to Permian Arafura Basin and older Proterozoic rocks of the Pine Creek Orogen and McArthur Basin. It is bounded by the Bonaparte Basin to the west and the Carpentaria Basin to the east. The southern margin of the basin occurs onshore and is an erosional feature, although scattered remnant outliers of Money Shoal Basin rocks occur in isolated areas to the south and south-east of Darwin. The northern parts remain less explored, situated beyond Australia's maritime border with Indonesia. The basin's Mesozoic sediments were deposited during passive margin subsidence, and consequently remain relatively undeformed. Compressional tectonics were later initiated during the Cenozoic collision between the Indo-Australian plate and Southeast Asia, causing minor structural disruptions along the northwest margin of the Australian plate. Most of the sediments in the basin were deposited in shallow to marginal marine environments, with minor evidence for short-lived episodes of deltaic and fluvial deposition in some areas. The sedimentary packages in the offshore basin are divided into four groups: Troughton Group equivalent, Flamingo Group equivalent, Bathurst Island Group, and Woodbine Group equivalent. Onshore, the stratigraphic succession is limited to the Plover Formation equivalent, Bathurst Island Group, and the Eocene Van Diemen Sandstone. The Troughton Group extends from the Bonaparte Basin into western parts of the Money Shoal Basin, and chiefly consists of sandstone. The Flamingo Group, identified offshore, is considered equivalent to its Bonaparte Basin counterpart, characterized by sandstone and mudstone deposits, suggesting fluvial and deltaic settings. The Bathurst Island Group dominates onshore, composed mainly of fine-grained claystone, marl, and siltstone. The Woodbine Group is the uppermost unit, and is equivalent to the Woodbine Group of the Bonaparte Basin, consisting of Cenozoic deposits, primarily sandstone and claystone, indicating shallow marine and deltaic environments.
-
This Darling Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The geological Darling Basin, covering approximately 130,000 square kilometres in western New South Wales (with parts in South Australia and Victoria), is filled with over 8,000 m of mainly Devonian sedimentary rocks formed in various environments, from alluvial to marine. It sits atop regional basement structures, coinciding with boundaries between Late Paleozoic Kanmantoo, Lachlan, and Southern Thomson Fold Belts. The basin's outcrops are scarce, obscured by younger rocks and sediments. Sedimentary rocks from Late Silurian to Early Carboniferous periods make up the basin, with marine shales and fluvial quartz-rich sandstones being the most common. The Menindee and Bancannia Troughs rest unconformably over Proterozoic and Lower Paleozoic basement rocks, while eastern sub-basins onlap deformed and metamorphosed Lower Paleozoic rocks. A major tectonic shift at the end of the Ordovician transformed south-eastern Australia's palaeogeography from a marginal marine sea to deep troughs and basins. The Darling Basin's discrete sedimentary troughs formed in areas of maximum tectonic extension, including the Ivanhoe, Blantyre, Pondie Range, Nelyambo, Neckarboo, Bancannia, Menindee troughs, and Poopelloe Lake complex. Spatial variation in sedimentary facies indicates potential interconnections between the troughs. The western basin overlies Proterozoic and Lower Paleozoic rocks of the Paroo and Wonominta basement blocks, while the eastern basin onlaps folded, faulted, and metamorphosed older Paleozoic rocks of the Lachlan Fold Belt. The Darling Basin has seen limited hydrocarbon exploration, with wells mostly situated on poorly-defined structures. Indications of petroleum presence include gas seeping from water bores, potential source rocks in sparsely sampled Early Devonian units, and occasional hydrocarbon shows in wells. Reservoir units boast good porosity and permeability, while Cambrian to Ordovician carbonates and shales beneath the basin are considered potential source rocks.
-
As a participating organisation in the Global Mapping Project, and following discussions held at the 22nd meeting of the International Steering Committee for Global Mapping (ISCGM), the Secretariat of the ISCGM has requested the assistance of Geoscience Australia in the validation of intermediate products of global land cover, the Global Land Cover by National Mapping Organisation (GLCNMO) version 3. The request sent to Geoscience Australia involves the use of existing maps and other materials, based on expertise and knowledge to report the validation of the GLCNMO version 3 datasets.
-
This Southern Australian Fractured Rock Province dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. Crustal elements are crustal-scale geological regions primarily based on composite geophysical domains, each of which shows a distinctive pattern of magnetic and gravity anomalies. These elements generally relate to the basement, rather than the sedimentary basins. The South Australian Element comprises the Archean-Mesoproterozoic Gawler Craton and Paleo-Mesoproterozoic Curnamona Province, formed over billions of years through sedimentation, volcanism, magmatism, and metamorphism. The region experienced multiple continental-continent collisions, leading to the formation and breakup of supercontinents like Nuna and Rodinia, along with periods of extensional tectonism. Around 1,400 Ma, both the Gawler Craton and Curnamona Province were cratonised, and during the building of the Rodinia supercontinent (1,300-700 Ma), the present configuration of the region emerged. The area between the Gawler and Curnamona provinces contains Neoproterozoic to Holocene cover, including the Adelaide Superbasin, with the Barossa Complex as its basement, believed to be part of the Kimban Orogen. The breakup of Rodinia in the Neoproterozoic (830-600 Ma) resulted in mafic volcanism and extensional episodes, leading to the formation of the Adelaide Superbasin, characterized by marine rift and sag basins flanking the Gawler Craton and Curnamona Province. During the Mesozoic and Cenozoic, some tectonic structures were rejuvenated, while sedimentary cover obscured much of the now flatter terrain. Metamorphic facies in the region vary, with the Gawler and Curnamona provinces reaching granulite facies, while the Adelaide Superbasin achieved the amphibolite facies. The Gawler Craton contains rocks dating back to approximately 3,150 Ma, while the Curnamona Province contains rocks from 1,720 to 1,550 Ma. These ancient regions have undergone various deformation and metamorphic events but have remained relatively stable since around 1,450 Ma. The Adelaide Superbasin is a large sedimentary system formed during the Neoproterozoic to Cambrian, with distinct provinces. It started as an intracontinental rift system resulting from the breakup of Rodinia and transitioned into a passive margin basin in the southeast and a failed rift in the north. Later uplift and re-instigated rifting led to the deposition of thick Cambrian sediments overlying the Neoproterozoic rocks. Overlying basins include late Palaeozoic to Cenozoic formations, such as the Eromanga Basin and Lake Eyre Basin, which are not part of the assessment region but are adjacent to it.
-
Wildfires are one of the major natural hazards facing the Australian continent. Chen (2004) rated wildfires as the third largest cause of building damage in Australia during the 20th Century. Most of this damage was due to a few extreme wildfire events. For a vast country like Australia with its sparse network of weather observation sites and short temporal length of records, it is important to employ a range of modelling techniques that involve both observed and modelled data in order to produce fire hazard and risk information/products with utility. This presentation details the use of statistical and deterministic modelling of both observations and synthetic climate model output (downscaled gridded reanalysis information) in the development of extreme fire weather potential maps. Fire danger indices such as the McArthur Fire Forest Danger Index (FFDI) are widely used by fire management agencies to assess fire weather conditions and issue public warnings. FFDI is regularly calculated at weather stations using measurements of weather variables and fuel information. As it has been shown that relatively few extreme events cause most of the impacts, the ability to derive the spatial distribution of the return period of extreme FFDI values contributes important information to the understanding of how potential risk is distributed across the continent. The long-term spatial tendency FFDI has been assessed by calculating the return period of its extreme values from point-based observational data. The frequency and intensity as well as the spatial distribution of FFDI extremes were obtained by applying an advanced spatial interpolation algorithm to the recording stations' measurements. As an illustration maps of 50 and 100-year return-period (RP) of FFDI under current climate conditions are presented (based on both observations and reanalysis climate model output). MODSIM 2013 Conference
-
<p>This resource contains multibeam bathymetry data for Bynoe Harbour collected by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Northern Territory Government (Department of Environment and Natural Resources) during the period between 3 and 27 May 2016 on the RV Solander (survey SOL6432/GA04452). This project was made possible through offset funds provided by INPEX-led Ichthys LNG Project to Northern Territory Government Department of Environment and Natural Resources, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The intent of this four year (2014-2018) program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps that underpin marine resource management decisions. <p>The specific objectives of the survey were to: <p>1. Obtain high resolution geophysical (bathymetry) data for Bynoe Harbour; <p>2. Characterise substrates (acoustic backscatter properties, grainsize, sediment chemistry) for Bynoe Harbour; and <p>3. Collect tidal data for the survey area. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; physical samples of seabed sediments, underwater photography and video of grab sample locations and oceanographic information including tidal data and sound velocity profiles. <p>This dataset comprises multibeam bathymetry data. A detailed account of the survey is provided in: Siwabessy, P.J.W., Smit, N., Atkinson, I., Dando, N., Harries, S., Howard, F.J.F., Li, J., Nicholas W.A., Picard, K., Radke, L.C., Tran, M., Williams, D. and Whiteway, T. 2016. Bynoe Harbour Marine Survey 2016: GA4452/SOL6432 – Post-survey report. Record 2017/04. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2017.004.
-
This Bonaparte Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Bonaparte Basin is a large sedimentary basin off the north-west coast of Australia, encompassing both offshore and onshore areas. It has undergone multiple phases of extension, deposition, and tectonic inversion from the Paleozoic to Cenozoic periods. The Petrel Sub-basin, situated on the eastern margin, exhibits a north-west trending graben/syncline and exposes lower Paleozoic rocks onshore while transitioning to upper Paleozoic, Mesozoic, and Cenozoic sediments offshore. Onshore, the basin's geological structures reflect two dominant regimes: north to north-north-east trending Proterozoic basement structures associated with the Halls Creek Mobile Zone, and north-north-west trending basin structures linked to the rifting and later compressional reactivation of the Petrel Sub-basin. The Petrel Sub-basin has experienced growth and tectonic inversion since the Paleozoic, marked by volcanic activity, deposition of clastics and carbonates, and extension events. During the Devonian, extension occurred along faults in the Ningbing Range, leading to the deposition of clastics and carbonates. The Carboniferous to Permian period witnessed offshore extension associated with the Westralian Superbasin initiation, while onshore deposition continued in shallow marine and transitional environments. Thermal subsidence diminished in the Early Permian, and subsequent compression in the mid-Triassic to Early Jurassic reactivated faults, resulting in inversion anticlines and monoclines. After the Early Jurassic, the sub-basin experienced slow sag with predominantly offshore deposition. Post-Cretaceous deformation caused subsidence, and an Early Cretaceous transgression led to shallow marine conditions and the deposition of chert, claystone, and mudstones. Mid-Miocene to Recent compression, related to continental collision, reactivated faults and caused localized flexure. The stratigraphy of the onshore Bonaparte Basin is divided into Cambro-Ordovician and Middle Devonian to Early Permian sections. Studies have provided insights into the basin's stratigraphy, with an update to the Permo-Carboniferous succession based on seismic interpretation, borehole data integration, field validation, and paleontological information. However, biostratigraphic subdivision of the Carboniferous section remains challenging due to poorly constrained species definitions, leading to discrepancies in the application of biozonations.
-
This Wiso Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Wiso Basin, a large intra-cratonic basin in the central Northern Territory, covers about 140,000 square kilometres and is part of the Centralian Superbasin. It is bounded by the Tennant and Tanami regions to the east and west, while a thrust fault separates it from the Arunta Region to the south. The basin adjoins the Georgina Basin in the southeast and joins the Daly and Georgina basins beneath the Cretaceous strata of the Carpentaria Basin in the north. The basin contains a relatively flat, undeformed succession of strata that gently dip towards the main depo-centre, the Lander Trough. About 80% of the basin consists of shallow middle Cambrian strata, while the remaining portion is within the Lander Trough, containing a diverse succession of Cambrian, Ordovician, and Devonian units. The depositional history and stratigraphy reveal that early Cambrian saw widespread basaltic volcanism, with the Antrim Plateau Volcanics forming the base layer and aquitard of the Wiso Basin. The middle Cambrian deposits include the Montejinni Limestone, the oldest sedimentary unit, followed by the Hooker Creek Formation and the Lothari Hills Sandstone. The uppermost Cambrian unit is the Point Wakefield beds. The Ordovician deposits consist of the Hansen River beds, primarily composed of fossiliferous sandstone and siltstone deposited in shallow marine environments. The Devonian unit capping the basin is the Lake Surprise Sandstone, found in the Lander Trough area, formed in shallow marine, shoreline, and fluvial environments during the Alice Springs Orogeny. Three main hypotheses have been proposed for the formation of the Lander Trough: a large crustal downwarp before thrusting of Paleoproterozoic rocks, the formation of a half-graben by faulting along the southern boundary, or the formation of two en-echelon synclines by vertical block movement. While the majority of the Wiso Basin consists of shallow middle Cambrian rocks, the Lander Trough presents a more varied stratigraphic sequence, holding potential for Neoproterozoic and early Cambrian rocks. However, further drilling is needed to verify this. The presence of similar units in neighbouring basins provides valuable insight into the basin's geological history and development.