From 1 - 10 / 120
  • It is generally accepted that the near surface search space for mineral deposits in Australia and elsewhere in the world has been well explored and the frontier of exploration lies beneath post-mineralisation cover. The Exploring for the Future program aims to unlock this new search space in northern Australia and parts of southern Australia by reducing the technical risk of mineral exploration through the provision of innovative pre-competitive data and information. The first step to de-risk undercover exploration is to simply define the depth to prospective rocks as cover-thickness places first order constraints on the economic search space. With this aim in mind we present a preliminary model of the depth to pre-Neoproterozoic rocks between Tennant Creek and Mt Isa, an area of focused integrated studies of the Exploring for the Future program. This work aims to compliment recent and ongoing mineral potential assessments in this region, which suggest covered pre-Neoproterozoic rocks are prospective for iron oxide-copper-gold and sediment hosted base metal mineral deposits. Our model utilises a dasets of over eight four thousand point estimates of the depth to pre- Neoproterozoic strata from boreholes, reflection seismic profile interpretations and depth to magnetic top estimates mostly sourced from the new Estimates of Geological and Geophysical Surfaces database supplemented by the distribution of pre-Neoproterozoic strata outcrops. These constraints were objectively queried based on their reliability, subsampled at 0.05 degrees and gridded using an adjustable tension continuous curvature-surfacing algorithm. The result shows Palaeozoic cover-thickness generally increases away from outcrops with a notable exception east of Tennant Creek where cover-thickness is typically less than 250 m thick. Fortuitously, this region of shallow cover termed the East Tennant Ridge corresponds with a region recently assess to have potential to host iron oxide-copper-gold mineralisation.

  • This Galilee Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. This Galilee Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Galilee Basin is a large intracratonic sedimentary basin in central Queensland. The basin contains a variably thick sequence of Late Carboniferous to Middle Triassic clastic sedimentary rocks dominated by laterally extensive sandstone, mudstone and coal. These rocks were mostly deposited in non-marine environments (rivers, swamps and lakes), although there is minor evidence for marginal marine settings such as deltas and estuaries. Sedimentation did not occur continuously across the approximately 90 million year history of basin development, and intervals of episodic compression, uplift and erosion were marked by distinct depositional breaks. Over much of the surface area of the Galilee Basin the main aquifers targeted for groundwater extraction occur in the younger rocks and sediments that overlie the deeper sequence of the Galilee Basin. The primary aquifers that supply groundwater in this region are those of the Eromanga Basin, as well as more localised deposits of Cenozoic alluvium. However, in the central-east and north-east of the Galilee Basin, the Carboniferous to Triassic rocks occur at or close to surface and several aquifer units supply significant volumes of groundwater to support pastoral and town water supplies, as well as being the water source for several spring complexes. The three main groundwater systems identified in the Galilee Basin occur in the 1. Clematis Group aquifer, 2. partial aquifer of the upper Permian coal measures (including the Betts Creek beds and Colinlea Sandstone), and 3. aquifers of the basal Joe Joe Group. The main hydrogeological units that confine regional groundwater flow in the Galilee Basin are (from upper- to lower-most) the Moolayember Formation, Rewan Formation, Jochmus Formation and Jericho Formation. However, some bores may tap local groundwater resources within these regional aquitards in areas where they outcrop or occur close to surface. Such areas of localised partial aquifer potential may be due in part to enhanced groundwater storage due to weathering and fracturing.

  • <p>Dataset "Detailed surface geology – Upper Burdekin basalt provinces", downloaded from the Queensland Spatial Catalogue in April 2017 and clipped to the Upper Burdekin basalt provinces. <p>The polygons in this dataset are a digital representation of the distribution or extent of geological units within the area. Polygons have a range of attributes including unit name, age, lithological description and an abbreviated symbol for use in labelling the polygons. These have been extracted from the Rock Units Table held in Department of Natural Resources and Mines MERLIN Database. <p>© State of Queensland (Department of Natural Resources and Mines) 2017 Creative Commons Attribution

  • <p>Summary <p>Spring point locations compiled for the Nulla Basalt Province <p>A compilation of spring locations as identified through various methods, including existing Queensland Springs Database, topographic mapping, fieldwork visits, landholder citizen scientist mapping, and inspection for neighbouring similar features in Google Earth. This compilation has had locations adjusted through inspecting visible imagery and elevation data to identify the likely positions of springs at higher resolution.

  • This Eromanga Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Eromanga Basin, part of the Great Artesian Basin (GAB) in Australia, is an extensive Mesozoic sedimentary basin filled with a mix of non-marine and marine rocks. The GAB covers about 22% of the Australian land surface, including areas in Queensland, New South Wales, South Australia, and the Northern Territory. The Eromanga Basin is the largest among the basins that form the GAB. Spanning over 1,250,000 square kilometres in central and eastern Australia, the Eromanga Basin contains rocks ranging from Jurassic to Cretaceous in age. The sedimentary deposits consist of three main basin successions: Early Jurassic to Early Cretaceous fluvial and lacustrine, Early to mid-Cretaceous marine, and Late Cretaceous fluvial-lacustrine successions. The basin's stratigraphic architecture results from a complex interplay between subsidence-controlled accommodation, sediment supply rates, and changing sediment provenance. These controls were influenced by various factors, such as intra-plate stress fields, eustatic sea-level fluctuations, and dynamic mantle-driven topography during the breakup of the Gondwana supercontinent. During the Jurassic and Early Cretaceous, regional uplift of the Australian continent led to an influx of fluvial sand-rich sediments in the western Eromanga Basin. Subsequent rapid subsidence and global high sea levels during the Early Cretaceous allowed marine sediments to spread across much of Australia, including the Eromanga Basin. The basin later returned to non-marine sedimentation during the Late Cretaceous with deposition of the Winton Formation, followed by closure due to an east-directed Late Cretaceous compressional event. This rapid deposition of the Late Cretaceous Winton Formation played a crucial role in generating and expelling hydrocarbons from various source intervals. The movement of the Australian continent significantly impacted the basin, causing most tectonic activity to occur on the southern side of a prominent keel near Innamincka in the southern half of the GAB. Additionally, variations in the mechanical properties of the sub-lithospheric mantle affected stress distribution, leading to changes in surface elevation and the expression of discharge from aquifers, potentially influencing the location and pattern of spring sites within the South Australian part of the GAB.

  • The Geoscience Australia Structural Measurements Database contains field measurements of geological structure features such as bedding, foliation, lineation, faults and folds from field sites, measured sections, and boreholes. The database is delivered as a layer in Geoscience Australia's "Geological Field Sites, Samples and Observations" web service.

  • <p>The Barkly 2D Seismic Survey was acquired during September to November 2019 and commenced near the town of Camooweal on the border of Queensland and Northern Territory. This project is a collaboration between Geoscience Australia (GA) and the Northern Territory Geological Survey (NTGS), and was funded by the Australian Government's Exploring for the Future program and the Northern Territory Geological Survey under Northern Resourcing the Territory initiative. <p>The Barkly seismic survey extends the 2017 South Nicholson seismic survey and links with the existing Beetaloo Sub-basin seismic data. The total length of acquisition was 812.6 km spread over five lines 19GA-B1 (434.6 km), 19GA-B2 (45.9 km), 19GA-B3 (66.9 km), 19GA-B4 (225.8 km) and 19GA-B5 (39.4 km). The Barkly seismic project provides better coverage and quality of fundamental geophysical data over the region from the southern McArthur Basin to northern Mt Isa western succession. The Barkly seismic data will assist in improving the understanding of basins and basement structures and also the energy, mineral and groundwater resource potential in Northern Australia. The new reflection seismic data and derivative information will reduce the risk for exploration companies in this underexplored area by providing information for industry to confidently invest in exploration activities. <p>Raw data for this survey are available on request from clientservices@ga.gov.au - Quote eCat# 132890

  • NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents inorganic geochemical analyses undertaken by Geoscience Australia on selected rock samples, collected at roughly 4 m intervals.

  • This Laura Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Laura Basin contains sedimentary rocks deposited between 168 and 102 million years ago during the Middle Jurassic to Early Cretaceous. The basin extends offshore beneath the Great Barrier Reef, and forms a bowl-shaped geologic feature. The strata have a maximum thickness of about 1,000 m in the north-central part of the onshore basin. Three main stratigraphic units comprise the stratigraphic succession of the Laura Basin, these being the Rolling Downs Group (Late Aptian to Albian, Cretaceous), the Gilbert River Formation (Lower Cretaceous to Jurassic) and the Dalrymple Sandstone (Upper to Middle Jurassic). The Rolling Downs Group was deposited in a shallow marine environment and has a basal shale unit (the Wallumbilla Formation) with minor siltstone and conglomerate bands overlain by marine silty and sandy claystone. The Gilbert River Formation was deposited in lagoonal to marginal marine environments and is dominated by clay-rich sandstone that is locally glauconitic and interbedded with minor calcareous siltstone, claystone and conglomerate. The Dalrymple Sandstone was deposited in lagoonal and fluvial environments and is dominated by sandstone with lesser claystone, siltstone, conglomerate, tuff and coal. The Laura Basin overlies older rocks of the Permian to Triassic Lakefield Basin, which extends northwards into surrounding marine waters, the Paleozoic metasedimentary rocks of the Hodgkinson region, associated with the Mossman Orogen, and Proterozoic basement rocks.

  • Geoscience Australia’s Exploring for the Future (EFTF) program has established new techniques to collect onshore pre-competitive datasets on an unprecedented scale. The Exploration Incentive Scheme (EIS) is a Western Australian Government initiative that aims to encourage exploration for the long-term sustainability of the state’s resources sector. Integration of EFTF and EIS datasets has improved understanding of the geology across northern Australia, and the associated energy, mineral and groundwater resources potential. The onshore Canning Basin covers approximately 530 000 km2, and has proven prospectivity for conventional oil and gas, mainly in the northern part of the basin. Potential exists for unconventional resources that remain largely unexplored and untested. Gas resource assessments suggest that the basin has significant potential for recoverable shale gas and tight gas. Even with exploration continuing along the flanks of the Fitzroy Trough, the Canning Basin remains one of the least explored Paleozoic basins in the world (DMIRS, 2020). Australia’s longest onshore seismic line, 18GA-KB1, acquired in the southern Canning Basin addresses a long standing data gap across the Kidson Sub-basin and Waukarlycarly Embayment that assists with the resource evaluation of this frontier region. The Kidson Sub-basin covers 91 000 km2 and has a sag basin architecture. Preliminary interpretation of the seismic data indicates that the sedimentary basin is approximately 6 km deep, and includes a conformable package of Ordovician–Devonian siliciclastic, carbonate and evaporite facies of exploration interest. The Carboniferous succession is interpreted as not being present. Located on the western end of the seismic line, the newly drilled deep stratigraphic well Waukarlycarly 1 penetrated 2680.53 m of Cenozoic and Paleozoic strata and provides stratigraphic control for the geology imaged in the Waukarlycarly Embayment. A comprehensive elemental and δ13C isotope chemostratigraphy study assists with stratigraphic correlations within Ordovician sedimentary strata across the region (Forbes et al., 2020a, b). Oil and gas discoveries throughout the Canning Basin were generated from Paleozoic marine source rocks, deposited under stratified oxic and euxinic water columns. Three distinct petroleum systems, the Ordovician (Larapintine 2), Late Devonian (Larapintine 3) and latest Devonian–early Carboniferous (Larapintine 4), are recognized based on the geochemical character of their associated fluids and each display strong stratigraphic control (Carr et al., 2020). Widespread generation of gas from Paleozoic sources is evident from molecular analyses of gases recovered from petroleum wells and fluid inclusions (Boreham et al., 2020). Currently the Larapintine 2 Petroleum System is deemed most prospective system in the Kidson Sub-basin.