From 1 - 10 / 77
  • This abstract is to be submitted for the Great Artesian Basin Coordinating Committee Researcher's Forum on 27th-28th of March 2013, as part of the Great Artesian Basin Water Resource Assessment launch at the event.

  • The Great Artesian Basin Water Resource Assessment involves a basin-scale investigation of water resources to fill knowledge gaps about the status of water resources in the basin and the potential impacts of climate change and resource development. This report addresses findings in the Western Eromanga region. Citation: Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Western Eromanga region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia

  • This GIS package contains interpreted boundaries and thalwegs (valley bottoms) of Cenozoic palaeovalley systems derived from the Frome AEM Survey dataset. Palaeovalley boundaries are by Adrian Fabris, DMITRE, and include interpreted Eyre Formation sediments only. Palaeovalley thalwegs are by Ian Roach, GA, and include interpreted Eyre Formation and Namba Formation sediments. This dataset supports the Frome AEM Survey interpretation record, GA Record 2012/40-Geological Survey of South Australia Report Book 2012/00003.

  • The Eucla-Gawler 2D deep seismic survey L203 consists of one 834 km seismic line, 13GA-EG1. The data acquisition commenced on 28 November 2013, from Haig, WA and continued east along a road/track parallel to the Trans Australian Railway ending at Tarcoola, SA, on 7 February 2014. The reflection seismic data processing used standard processing and included special attention on refraction statics and deconvolution essential for optimal reflection imaging. High fold stacking provided enhanced seismic reflections in regions of no or weak reflectivity at standard fold. For most of the seismic line, the 20 s seismic data provide images of the full depth of the crust through this region.

  • Geoscience Australia has undertaken a regional seismic mapping study that extends into the frontier deep-water region of the offshore Otway Basin. This work builds on seismic mapping and petroleum systems modelling published in the 2021 Otway Basin Regional Study. Seismic interpretation spans over 18 000 line-km of new and reprocessed data collected in the 2020 Otway Basin seismic program and over 40 000 line-km of legacy 2D seismic data. Fault mapping has resulted in refinement and reinterpretation of regional structural elements, particularly in the deep-water areas. Structure surfaces and isochron maps highlight Shipwreck (Turonian–Santonian) and Sherbrook (Campanian–Maastrichtian) supersequence depocentres across the deep-water part of the basin. These observations will inform the characterisation of petroleum systems within the Upper Cretaceous succession, especially in the underexplored deep-water region. Presented at the 2022 Australian Petroleum Production & Exploration Association (APPEA)

  • <p>A regional mapping program conducted by Geoscience Australia addressed stratigraphic and structural aspects of exploration risk within the Triassic succession of the Roebuck Basin and parts of the adjacent sub-basins (central North West Shelf, Figure 1). <p>Seismic horizons of regional significance were mapped using 2D and 3D seismic surveys. Seismic survey coverage is shown in Figure 1. 2D surveys include regional deep surveys such as AGSO s110, AGSO s120, and PGS New Dawn. 3D surveys include Admiral, Beagle, CNOOC, Curt, Lord, Naranco, Polly, Whitetail, and a 5 x 5 km extract (used with permission) from the TGS Capreolus MC3D. Synthetic seismograms (Nguyen et al., 2019) were used to tie seismic horizons to wells. <p>The mapped horizons are placed within a regional tectonostratigraphic framework by Abbott et al. (2019, their Figure 2). This data pack comprises seismic horizon grids and isochron grids generated from the TR10.0_SB (base Triassic), TR17.0_SB (Mid–Triassic), and J10.0_SB (top Triassic) seismic horizons (Figure 2). Fault maps compiled at the TR10.0 _SB and J10.0_SB are also included.

  • This Surat Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Surat Basin is a sedimentary basin with approximately 2500 m of clastic fluvial, estuarine, coastal plain, and shallow marine sedimentary rocks, including sandstone, siltstone, mudstone, and coal. Deposition occurred over six cycles from the Early Jurassic to the Cretaceous, influenced by eustatic sea-level changes. Each cycle lasted 10 to 20 million years, ending around the mid-Cretaceous. Bounded by the Auburn Arch to the northeast and the New England Orogen to the southeast, it connects to the Clarence-Moreton Basin through the Kumbarilla Ridge. The Central Fold Belt forms its southern edge, while Cenozoic uplift caused erosion in the north. The basin's architecture is influenced by pre-existing faults and folds in the underlying Bowen Basin and the nature of the basement rocks from underlying orogenic complexes. Notable features include the north-trending Mimosa Syncline and Boomi Trough, overlying the deeper Taroom Trough of the Bowen Basin and extending southwards. The Surat Basin overlies older Permian to Triassic sedimentary basins like the Bowen and Gunnedah Basins, unconformably resting on various older basement rock terranes, such as the Lachlan Orogen, New England Orogen, and Thomson Orogen. Several Palaeozoic basement highs mark its boundaries, including the Eulo-Nebine Ridge in the west and the Kumbarilla Ridge in the east. Paleogene to Neogene sediments, like those from the Glendower Formation, cover parts of the Surat Basin. Remnant pediments and Cenozoic palaeovalleys incised into the basin have added complexity to its geological history and may influence aquifer connections. Overall, the Surat Basin's geological history is characterized by millions of years of sedimentation, tectonic activity, and erosion, contributing to its geological diversity and economic significance as a source of natural resources, including coal and natural gas.

  • This Bowen Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Bowen Basin is part of the Sydney–Gunnedah–Bowen basin system and contains up to 10,000 m of continental and shallow marine sedimentary rocks, including substantial deposits of black coal. The basin's evolution has been influenced by tectonic processes initiated by the New England Orogen, commencing with a phase of mechanical extension, and later evolving to a back-arc setting associated with a convergent plate margin. Three main phases of basin development have been identified; 1) Early Permian: Characterized by mechanical extension, half-graben development, thick volcanic units and fluvio-lacustrine sediments and coal deposits. 2) Mid Permian: A thermal relaxation event led to the deposition of marine and fluvio-deltaic sediments, ending with a regional unconformity. 3) Late Permian and Triassic: Foreland loading created a foreland basin setting with various depositional environments and sediment types, including included fluvial, marginal marine, deltaic and marine sediments along with some coal deposits in the late Permian, and fluvial and lacustrine sediments in the Triassic. Late Permian peat swamps led to the formation of extensive coal seams dominating the Blackwater Group. In the Triassic, fluvial and lacustrine deposition associated with foreland loading formed the Rewan Formation, Clematis Sandstone Group, and Moolayember Formation. The basin is a significant coal-bearing region with over 100 hydrocarbon accumulations, of which about one third are producing fields. The Surat Basin overlies the southern Bowen Basin and contains varied sedimentary assemblages hosting regional-scale aquifer systems. Cenozoic cover to the Bowen Basin includes a variety of sedimentary and volcanic rock units. Palaeogene and Neogene sediments mainly form discontinuous units across the basin. Three of these units are associated with small eponymous Cenozoic basins (the Duaringa, Emerald and Biloela basins). Unnamed sedimentary cover includes Quaternary alluvium, colluvium, lacustrine and estuarine deposits; Palaeogene-Neogene alluvium, sand plains, and duricrusts. There are also various Cenozoic intraplate volcanics across the Bowen Basin, including central volcanic- and lava-field provinces.

  • NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a newly discovered Proterozoic depocentre in the South Nicholson region, based on interpretation from new seismic surveys (L210 in 2017 and L212 in 2019) acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1751 m. Geoscience Australia conducted an extensive post-drilling analytical program that generated over 30 datasets which the interested reader can find under the EFTF webpage (under the "Data and publications" drop down menu) at https://www.eftf.ga.gov.au/south-nicholson-national-drilling-initiative This record links to the Exploring for the Future 'borehole completion report' for NDI Carrara 1 and access to all on-site downhole geophysical datasets.

  • This abstract is to be submitted for the Great Artesian Basin Coordinating Committee Researcher's Forum on 27th-28th of March 2013, as part of the Great Artesian Basin Water Resource Assessment launch at the event.