From 1 - 10 / 167
  • This dataset reflects the boundaries of those Indigenous Land Use Agreements (ILUA) that have entered the notification process or have been registered and placed on the Register of Indigenous Land Use Agreements (s199A, Native Title Act; Commonwealth). This is a national dataset. Aspatial attribution includes National Native Title Tribunal number, Name, Agreement Type, Proponent, Area and Registration Date. Geospatial data portraying native title information produced by the National Native Title Tribunal may not be on-sold. Value added products using this data must acknowledge the National Native Title Tribunal as the data source and include the NNTT disclaimer.

  • The derivation of this data set is described in detail by M.Somerville,D. Wyborn, P. N. Chopra, S. S. Rahman, D. Estrella and T. van der Meulen(1994), "Hot Dry Rocks Feasibility Study", Australian Energy Research and Development Corporation Report 94/243, pp 133. The temperature at 5 km depth has been estimated from temperature logresults from 3475 boreholes for which bottom-hole temperature andtemperature gradient data are available. An image has been built from these extrapolated temperature estimates using the Arc/Info createtin and tinlattice commands.

  • This data set compiles information on components of the water balance from plot scale studies around Australia and in particular those studies that have identified groundwater discharge through vegetation as a component of the water balance. The data has been collated from published literature in journal article and reports. It provides spatial coverage of field estimates of discharge conducted across Australia as identified by the review: O'Grady A, Carter J and Holland K (2010) Review of Australian groundwater discharge studies of terrestrial systems. CSIRO: Water for a Healthy Country National Research. http://www.clw.csiro.au/publications/waterforahealthycountry/2010/wfhc-review-australian-groundwater-discharge-studies.pdf

  • This gravity anomaly image has been derived from observations stored in the Australian National Gravity Database (ANGD) as at February 2016 as well as data from the 2013 New South Wales Riverina gravity survey. Out of the approximately 1.8 million gravity observations 1,371,998 gravity stations in the ANGD together with 19,558 stations from the Riverina survey were used to generate this image. The image shows complete Bouguer anomalies over onshore continental Australia. The data used in this image has been acquired by the Commonwealth, State and Territory Governments, the mining and exploration industry, universities and research organisations from the 1940's to the present day. Terrain corrections to gravity were calculated using both offshore bathymetry and onshore topography data. These terrain corrections were applied to the spherical cap Bouguer anomalies used in the Bouguer Gravity Anomaly Grid of Onshore Australia 2016 to produce the complete Bouguer anomalies shown in this image. The Complete Bouguer Gravity Anomaly Grid of Onshore Australia 2016 has been image enhanced and displayed as a hue-saturation-intensity (HSI) image with sun shading from the northeast to create this product.

  • This product contains all 1:250 000 scale NATMAP topographic maps covering Australia as georeferenced raster files which is ideal for use with GPS. The product also includes: -Eight Australia MGA Zone maps for measuring distance at 1:250,000 scale -A map of Australia at 1:1 million scale (currency average 1976) -A 2005 Landsat Satellite image of Australia (25m pixel size) -Gazetteer of Austalia 2006.

  • Drainage network containing perennial/non-perennial waterbodies and linear features such as streams, coastlines and inland shores (dataset derived from the Digital Chart of the World (DCW)). Generic information on DCW data sets The primary source for DCW is the US Defense Mapping Agency (DMA) Operational Navigation Chart (ONC) series produced by the United States, Australia, Canada, and the United Kingdom. The ONCs have a scale of 1:1,000,000, where 1 inch equals approximately 16 miles.The charts were designed to meet the needs of pilots and air crews in medium and low altitude en route navigation and to support military operational planning, intelligence briefings, and other needs. Therefore, the selection of ground features is based on the requirement for rapid visual recognition of significant details seen from a low perspective angle. The DCW database was originally published in 1992. Data currency varies from place to place depending on the currency of the ONC charts. Chart currency ranges from the mid 1960s to the early 1990s. Compilation dates for every ONC chart are included in the database. For more information on the Digital Chart of the world please browse the DCW website where you can download these data in VPF format. GA has converted these VPF format files to common GIS formats Arcview and Mapinfo. Available datasets include drainage, roads and railway networks, political areas and boundaries and population centres. Available for free download.

  • Geoscience Australia has completed the first phase of an areal map of Australia's coastal geomorphological units. Utilising pre-existing GIS datasets procured from local, state and federal government agencies, this national scale map conforms to a coastal geomorphology classification scheme developed at Geoscience Australia. Phase one consists of a geodatabase containing a series of state wide feature datasets that have been reclassified into the national coastal geomorphology classification scheme.

  • This is a proof of concept web service displaying trial samples of historic flood mapping from satellite. Over the next 2 years this service will be developed into a nationwide portal displaying flooding across Australia as observed by satellite since 1987. The service shows a summary of water observed by the Landsat-5 and MODIS satellites across Australia for periods between 2000 and 2012. The first layer set displays national observed water from MODIS fvrom 2000 to 2012, as derived by Geoscience Australia using an automated flood mapping algorithm. The colouring of the display represents the frequency of observed water in a 500 x 500m grid. The higher the number, the more often water was observed by the satellites over the period. This means that floods have low values, while lakes, dams and other permanent water bodies have high values. The three additional layer sets are study areas demonstrating the water observed in each study area by the Landsat-5 satellite, as derived by Geoscience Australia using an automated flood mapping algorithm. The study areas and the observation periods are: Study Area 1, Condamine River system between Condamine and Chinchilla, Qld, observed between 2006 and 2011 Study Area 2, North-west Victorian rivers between Shepparton and Kerang, observed between 2006 and 2011 Study Area 3, Northern Qld rivers, near Normanton, observed between 2003 and 2011 Each Study Area layer set includes a water summary displaying the frequency of observed water in 25 x 25m grids, plus individual flood extents for specific dates where flooding was observed. Similar to the national, MODIS summary, the higher the value, the more often water was observed by the satellites over the period. Limitations of the Information The automated flood mapping algorithm can confuse cloud shadows and snow with flood water, so some areas shown as water may be incorrect. This is a proof of concept dataset and has not been validated.

  • Shows a reconstruction of Australian vegetation in the 1780s. Areas over 30,000 hectares are shown, plus small areas of significant vegetation such as rainforest. Attribute information includes: growth form of tallest and lower stratum, foliage cover of tallest stratum and dominant floristic types. Data are captured from 1:5 million source material. Data are suitable for GIS applications, via free download. The source map is also available for purchase. Product Specifications: Coverage: Australia Currency: Compiled mid-1980s Coordinates: Geographical Datum: AGD66 Projection: Simple Conic on two standard parallels 18S and 36S (printed map only) Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif (data only) Medium: Printed map - Paper (flat and folded); Free online and CD-ROM (fee applies) Forward Program: Under review.

  • This dataset attempts to reflect the boundaries of claimant applications for Native Title as per the Register of Native Title Claims (s185, Native Title Act; Commonwealth). This is a national dataset but data is stored by jurisdiction (State), for ease of use. Applications stored for each jurisdiction dataset include applications which overlap into adjoining jurisdictions as well as applications which overlap with these. This dataset depicts the spatial record of registered claimant applications. Aspatial attribution includes National Native Title Tribunal number, Federal Court number, application status and the names of both the NNTT Case Manager and Lead Member assigned to the application. Applicants of registered applications have the Right To Negotiate (RTN) with respect to certain types of Future Acts over the area being claimed. Whilst applications that are determined are recorded on a separate register, all registered applications remain on the Register of Native Title Claims until otherwise finalised.. Geospatial data portraying native title information produced by the National Native Title Tribunal may not be on-sold. Value added products using this data must acknowledge the National Native Title Tribunal as the data source and include the NNTT disclaimer.