From 1 - 10 / 213
  • The sediments deposited beneath the floating ice shelves around the Antarctic margin provide important clues regarding the nature of sub-ice shelf circulation and the imprint of ice sheet dynamics and marine incursions on the sedimentary record. Understanding the nature of sedimentary deposits beneath ice shelves is important for reconstructing the icesheet history from shelf sediments. In addition, down core records from beneath ice shelves can be used to understand the past dynamics of the ice sheet. Six sediment cores have been collected from beneath the Amery Ice Shelf in East Antarctica, at distances from the ice edge of between 100 and 300 km. The sediment cores collected beneath this ice shelf provide a record of deglaciation on the Prydz Bay shelf following the last glaciation. Diatoms and other microfossils preserved in the cores reveal the occurrence and strength of marine incursions beneath the ice shelf, and indicate the varying marine influence between regions of the sub-ice shelf environment. Variations in diatom species also reveal changes in sea ice conditions in Prydz Bay during the deglaciation. Grain size analysis indicates the varying proximity to the grounding line through the deglaciation, and the timing of ice sheet retreat across the shelf based on 14C dating of the cores. Two of the cores contain evidence of cross-bedding towards the base of the core. These cross-beds most likely reflect tidal pumping at the base of the ice shelf at a time when these sites were close to the grounding line of the Lambert Glacier.

  • The late Quaternary ice sheet/ice shelf extent in the George V Basin (East Antarctica) has been reconstructed through analyses of Chirp sub-bottom profiles, integrated with multi-channel seismic data and sediment cores. Four glacial facies, related to the advance and retreat history of the glaciated margin, have been distinguished: Facies 1 represents outcrop of crystalline and sedimentary rocks along the steep inner shelf and comprises canyons once carved by glaciers; Facies 2 represents moraines and morainal banks and ridges with a depositional origin along the middle-inner shelf; Facies 3 represents glacial flutes along the middle-outer shelf; Facies 4 is related to ice-keel turbation at water depths <500 m along the outer shelf. A sediment drift deposit, located in the NW sector of the study area, partly overlies facies 2 and 3 and its ground-truthing provides clues to understanding their age. We have distinguished: a) an undisturbed sediment drift deposit at water depth >775 m, with drape/sheet and mound characters and numerous undisturbed sub-bottom sub-parallel reflectors (Facies MD1); b) a fluted sediment drift deposit at water depth <775 m, showing disrupted reflectors and a hummocky upper surface (Facies MD2). Radiocarbon ages of sediment cores indicate that the glacial advance producing facies MD2 corresponds to the Last Glacial Maximum (LGM) and that during the LGM the ice shelf was floating over the deep sector of the basin, leaving the sediment drift deposit undisturbed at major depths (Facies MD1). This observation further implies that: a) glacial facies underneath the sediment drift were the result of a grounding event older than the LGM, b) this sector of the East Antarctic fringe was sensitive to sea-level rise at the end of the LGM; thus potentially contributing to meltwater discharge during the last deglaciation.

  • Climatically controlled glaciological and oceanogrphic environmental changes off the George V Coast during the Late Pleistocene and Holocene have been recontructed from changes in sedimentation processes. The evolution of a sediment drift deposit located deep in the deep trough on the shelf has been assessed using a sedimentological approach.

  • The sediments deposited beneath the floating ice shelves around the Antarctic margin provide important clues regarding the nature of sub-ice shelf circulation and the imprint of ice sheet dynamics and marine incursions on the sedimentary record. Understanding the nature of sedimentary deposits beneath ice shelves is important for reconstructing the icesheet history from shelf sediments. In addition, down core records from beneath ice shelves can be used to understand the past dynamics of the ice sheet. Six sediment cores have been collected from beneath the Amery Ice Shelf in East Antarctica, at distances from the ice edge of between 100 and 300 km. The sediment cores collected beneath this ice shelf provide a record of deglaciation on the Prydz Bay shelf following the last glaciation. Diatoms and other microfossils preserved in the cores reveal the occurrence and strength of marine incursions beneath the ice shelf, and indicate the varying marine influence between regions of the sub-ice shelf environment. Variations in diatom species also reveal changes in sea ice conditions in Prydz Bay during the deglaciation. Grain size analysis indicates the varying proximity to the grounding line through the deglaciation, and the timing of ice sheet retreat across the shelf based on 14C dating of the cores. Two of the cores contain evidence of cross-bedding towards the base of the core. These cross-beds most likely reflect tidal pumping at the base of the ice shelf at a time when these sites were close to the grounding line of the Lambert Glacier.

  • Measurements of water turbidity, currents, seafloor sediment samples and geophysical data document the sedimentary processes and the Late Quaternary sedimentary history of a continental shelf valley system on the East Antarctic continental margin.

  • The stability of floating ice shelves is an important indicator of ocean circulation and ice-shelf mass balance. A sub-ice -shelf sediment core collected during the Austral summer of 2000-2001 from site AM02 on the Amery Ice Shelf, East Antarctica, contains a full and continuous record of glacial retreat.

  • The Antarctic field notebooks contain the geological observations recorded by Bureau of Mineral Resources geologists during their trips to Antarctica. These csv files are the copies of the transcriptions made on the DigiVol transcription platform with the TEI tags removed. Please see the README file for full details. Also see HPRM8/TRIM folder A17/764 for full documentation about the project. These are the csv files that are used in the Biodiversity Heritage Library copy of the notebooks.

  • To study the seafloor morpholofy on the George V land shelf, East Antarctica, over 2000 kilometres of high-frequency echo-sounder data were collected between February and March 2000. The acoustic facies are explained in terms of glacial and oceanographic influences on the shelf since the Last Glacial Maximum.

  • The Antarctic Ice Sheet plays a fundamental role in influencing global climate, ocean circulation patterns and sea levels. Currently, significant research effort is being directed at understanding ice sheet dynamics, ice mass balance, ice sheet changes and the potential impact on, and magnitude of, global climate change. An important boundary condition parameter, critical for accurate modelling of ice sheet dynamics, is geothermal heat flux, the product of natural radiogenic heat generated within the earth and conducted to the earths surface. The total geothermal heat flux consists of a mantle heat component and a crustal component. Ice sheet modelling generally assume an 'average' crustal heat production value with the main variable in geothermal heat flux due to variation of the mantle contribution as a function of crustal thickness. The mantle contribution is typically estimated by global scale seismic tomography studies or other remote methods. While the mantle contribution to the geothermal heat flux is a necessary component, studies of ice sheet dynamics do not generally consider local heterogeneity of heat production within the crust, which can vary significantly from global averages. Heterogeneity of crustal heat production can contribute to significant local variation of geothermal heat flux and may provide crucial information necessary for understanding local ice sheet behaviour and modelling.

  • Ecoregions are defined in terms of community structure in function of abiotic or even anthropogenic forcing. They are mesoscale structures defined on the potential habitat of species or predicted communities geographic extent. We assume that they can be more easily defined for long-lived species such as benthos or neritic fish in the marine environment. Uncertainties exist for the pelagic realm because of its higher variability, plus little is known about the meso- and bathypelagic zones. A changing environment and modifications of habitats will probably drive new communities from plankton to fish or top predators. We need based-line studies such as those of CAML, databases like SCAR-MarBIN and tools for integrating all of these observations. Our objective is to understand the biodiversity patterns in the Southern Ocean and how these might change.