From 1 - 10 / 214
  • Sub-glacial geothermal heat flow is acknowledged to be a critical, yet poorly constrained, boundary parameter influencing ice sheet behaviour (Winsborrow et al 2010). Geothermal heat flow is the sum of residual heat from the formation of the Earth and the natural heat generated within the Earth from the radiogenic decay of the major heat producing elements (HPEs), U, Th and K. Estimates of the sub-glacial geothermal heat flow in Antarctica are largely deduced from remotely-sensed low-resolution datasets such as seismic tomography or satellite-based geomagnetics. These methods provide broad regional estimates of geothermal heat flow reflecting variations in the mantle contribution as a function of thickness of a thermally homogeneous crust. These estimates of sub-glacial geothermal heat flow, although widely utilised in ice sheet modelling studies, fail to account for lateral and vertical heterogeneity of heat production within the crust where HPEs are concentrated and that are known to significantly impact regional geothermal heat flow values. Significant variations in regional geothermal heat flow due to heterogeneous crustal distribution of HPEs have been recognised within southern Australia (e.g. McLaren et al., 2006), a region that was connected to east Antarctica along the George V, Adélie and Wilkes Lands coastline prior to breakup of Gondwana. The South Australian Heat Flow Anomaly (SAHFA; e.g. Neumann et al., 2000) is characterized by surface heat flows as high as 126 mWm-2, some '2-3 times' that of typical continental values, due to local enrichment of HPEs. The SAHFA forms part of a once contiguous continental block called the Mawson Continent, a now dismembered crustal block that is known, from geological and geophysical evidence, to extend deep into the sub-glacial interior of the Antarctic. It is highly probable that the high geothermal heat flow characteristics of the SAHFA also extend into the sub-glacial hinterland of Terra Adélie and George V lands, a possibility that has not been previously considered in ice sheet studies. In order to account for the occurrence of several sub-glacial lakes in Adélie Land, Siegert & Dowdeswell (1996) concluded that 'a further 25-50 mWm-2 of equivalent geothermal heat' was required over the assumed local geothermal heat flow of ca. 54 mWm-2. Although that study concluded that the additional heat required for basal melting was derived from internal ice deformation, they also acknowledged the possible role of variations in geothermal heat flow, and now that the SAHFA is well characterised, this is a possibility that appears very likely.

  • Frank Stillwell was a member of Douglas Mawson's 1911-1914 expedition to Cape Denison, Commonwealth Bay, Antarctica. His 1912 diary is being edited for publication. The editor has asked for a text box to be included in the publication that describes aspects of the geomagnetism activities that formed part of the expedition's scientific program.

  • The Rayner Complex of East Antarctica is exposed between 45??80?E in the Enderby Land through Princes Elizabeth Land sector of East Antarctica. It is known to correlate with parts of present day India and to have been deformed and metamorphosed at high grades in the earliest Neoproterozoic (990-900 Ma). The age and origin of the protolith rocks of the Rayner Complex however remains largely unknown, as does the tectonic setting in which these rocks formed. New age data collected from the northern Prince Charles Mountains (eastern Rayner Complex), demonstrate that the pre-orogenic rocks from this region consist of: (1) volcanogenic and terrigenous sediments deposited between 1400 Ma and 1020 Ma in a magmatically active basin characterised by limited input from cratonic sources and, (2) probable syn-sedimentary granitoids dated to 1150 Ma. Our data confirm the continuity of the Rayner Complex into Prydz Bay, a region that preserves a remarkably similar geologic history but which is often differentiated from the Rayner Complex on the basis of a higher grade early Cambrian (~520 Ma) overprint. On the basis of our data we further conclude that the Rayner Complex protoliths likely in formed in a back-arc system that existed along the margin of the pre-Gondwana Indian craton. Anticlockwise P-T paths and high-T, low-P metamorphism associated with the inversion of the Rayner back-arc (990-900 Ma) suggest this event resulted from the accretion of a number of independent microplates, rather than continent-continent collision.

  • Can you help the Geoscience Australia Library? We are seeking the field notebooks of any geologists who worked for the Bureau of Mineral Resources (BMR) in Antarctica, especially those from the 1950s-80s, to include in our digitisation project. Tucked away in archive boxes in the basement compactus of the Geoscience Australia Library in Canberra, lie over 3500 geol ogical field notebooks. These notebooks contain the observations of BMR geologists from the 1940s onwards as they worked their way across Australia, parts of Papua New Guinea and Pakistan, and the Australian Antarctic Territory. Around 100 Antarctic field notebooks are the focus of a pilot digitisation project to improve access to the rich data they contain and ensure they are preserved for future generations to use.

  • Dense coral-sponge communities on the upper continental slope at 570 - 950 m off George V Land have been identified as a Vulnerable Marine Ecosystem in the Antarctic. The challenge is now to understand their likely distribution. Based on results from the Collaborative East Antarctic Marine Census survey of 2007/2008, we propose some hypotheses to explain their distribution. Icebergs scour to 500 m in this region and the lack of such disturbance is probably a factor allowing growth of rich benthic ecosystems. In addition, the richest communities are found in the heads of canyons. Two possible oceanographic mechanisms may link abundant filter feeder communities and canyon heads. The canyons in which they occur receive descending plumes of Antarctic Bottom Water formed on the George V shelf and these water masses could entrain abundant food for the benthos. Another possibility is that the canyons harbouring rich benthos are those that cut the shelf break. Such canyons are known sites of high productivity in other areas because of a number of oceanographic factors, including strong current flow and increased mixing with shelf waters, and the abrupt, complex topography. These hypotheses provide a framework for the identification of areas where there is a higher likelihood of encountering these Vulnerable Marine Ecosystems.

  • Prydz Bay and the Mac.Robertson Land Shelf exhibit many of the variations seen on Antarctic continental shelves. The Mac.Robertson Shelf is relatively narrow with rugged inner shelf topography and shalow outer banks swept by the west-flowing Antarctic Coastal Current. U-shaped valleys cut the shelf. it has thin sedimentary cover deposited and eroded by cycles of glacial advance and retreat through the Neogene and Quaternary. Modern sedimention is diatom-rich Siliceosu Muddy OOze in shelf deeps while on the banks, phytodetritus, calcareous bioclasts and terrigenous material are mixed by iceberg ploughing. Prydz Bay is a large embayment fed by the Amery Ice Shelf. it has a broad inner shelf deep and outer bank with depths ranging from 2400 m beneath the ice shelf to 100 m on the outer bank. A clockwise gyre flows through the bay. Fine mud and siliceous ooze drapes the sea floor however banks are scoured by icebergs to depths of 500 m.

  • Life in icy waters: A geoscience perspective of life on the Antarctic seafloor

  • In 2010, a network of Marine Protected Areas (MPAs) was proposed for the East Antarctic region. This proposal was based on the best available data, which for the benthic regime consisted chiefly of seabed geomorphology and satellite bathymetry data. Case studies from the East Antarctic region indicate that depth and morphology are important factors in delineating marine benthic communities, particularly on the continental shelf. However, parameters such as sediment composition also show a strong association with the distribution and diversity of benthic assemblages. A better assessment of the nature of benthic habitats within the proposed MPA network is now possible with the incorporation of a compilation of sediment properties and higher resolution bathymetry grids across the East Antarctic region (see Figures A and B). Based on these physical properties, and in combination with the seabed morphology, we can now distinguish a range of distinct habitats, such as deep muddy basins, scoured sandy shelf banks, ruggedly eroded slope canyons and muddy deep sea plains. In this presentation, we assess the types of benthic habitats across the East Antarctic region, and then determine how well the proposed MPA network represents the diversity of habitats across this margin. The diversity of physical environments within the proposed MPAs suggests that they likely support a diverse range of benthic communities which are broadly representative of the surrounding region.

  • One page article discussing aspects of Australian stratigraphy; this article discusses practical Australian solutions to igneous nomenclature and the indexing of relevant Antarctic units

  • Less than one year after the spectacular calving of the Mertz Glacier tongue, scientists were collecting the first ever images of the seafloor where the glacier tongue once sat.