2014
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
The first edition ACE - Australian Continental Elements dataset is a GIS representation of the lithosphere fabrics of the Australian plate, interpreted from linear features and associated discontinuities in the gravity anomaly map of continental Australia (Bacchin et al., 2008; Nakamura et al., 2011) and the global marine gravity dataset compiled from satellite altimetry (Sandwell & Smith, 2009). It should be used in context with these input data sources, at scales no more detailed than the nominal scale of 1:5 000 000.
-
Since the early 2000s Geoscience Australia has been compiling new seamless national continental scale geological maps. The first edition of a seamless 1:1 000 000 scale surface geology map of Australia was released in 2008 [1] and the latest edition released in 2012 [2]. This work draws extensively from available geological mapping in Australia, primarily at the scales of 1:250 000 and 1:100 000 with the addition of some special regional scale maps. The digital GIS dataset is linked to other national geoscience databases at Geoscience Australia, including the Australian Stratigraphic Units Database. In September 2013, Geoscience Australia released the first national Geological Provinces dataset [3]. Geoscience Australia's Geological Provinces Database captures detailed information such as age, stratigraphy, lithology, mineral resources, and relations to other provinces. It also captures outlines of the full (ie, concealed) extent and outcropping extent of a province. As part of Geoscience Australia's contribution to Searching the Deep Earth [4], current continental scale digital geological mapping in Geoscience Australia includes production of a new national bedrock geological map at 1:2 500 000 scale with stratigraphic units information that can be linked with other national geoscience databases, basement geology, and a national regolith landforms coverage. Looking ahead, a goal is to produce seamless, continental scale basement or 'solid' geology maps for a variety of depth/time slices. A recent step towards this goal has been the production of a map of Mesoproterozoic and older basement geology for a large region of central Australia, from the eastern Yilgarn Craton of Western Australia across the Musgrave and southern Arunta Provinces to the Queensland border.
-
The Early Cretaceous Gage Sandstone and South Perth Shale formations are a prospective reservoir-seal pair in the Vlaming Sub-basin. Plays include post-breakup pinch-outs in the Gage Sandstone with the South Perth Shale forming top seal. The Gage reservoir has porosities of 18-25% and permeabilities of 1-1340 mD. It was deposited in palaeotopographic lows of the Valanginian breakup unconformity and is the lowstand component of the thick deltaic South Perth (SP) Supersequence. To characterise the reservoir-seal pair, a detailed sequence stratigraphic analysis was conducted by integrating 2D seismic interpretation, well log analysis and new biostratigraphic data. Palaeogeographic reconstructions for the SP Supersequence were derived from mapping higher-order prograding packages and establishing changes in sea level and sediment supply. Higher resolution Gage reservoir reconstructions were based on seismic facies mapping. The Gage reservoir forms part of a sand-rich submarine fan system similar to model proposed by Richards et al (1998). It ranges from canyon confined inner fan deposits to middle fan deposits on a basin plain. Directions of sediment supply are complex, with major sediment contributions from a northern and southern canyon adjacent to the Badaminna Fault Zone. The characteristics of the SP Supersequence differ markedly between the northern and southern parts of the sub-basin due to variations in palaeotopography and sediment supply. Palaeogeographic reconstructions reveal a series of regressions and transgressions leading to infilling of the palaeo-depression. Palaeogeographic reconstructions for the SP Supersequence portray a complex early post-rift depositional history in the central Vlaming Sub-basin. The developed approach is applicable for detailed studies of other sedimentary basins. APPEA
-
This collaborative project between Geoscience Australia (GA) and CSIRO aims to use physicochemical measurements, collected from surface overbank sediments as part of the National Geochemical Survey of Australia (NGSA) project, to help validate the ASTER multispectral geoscience maps of Australia. Both data sets have common information including that related to the surface abundance of silica, aluminium, iron, clay, sand and volatiles (including carbonate). The ASTER geoscience maps also provide spatial information about trends of mineral composition, which are potentially related to pH and oxidation state.
-
2014 Open Day Promotional Material
-
Mineral deposits, although geographically small in extent, are the result of processes-which together form a mineral system-that occur, and can be mapped at, a variety of scales, up to craton-scale and larger. The mineral system approach has the benefit that in it focuses on critical processes and can include larger scales not always considered. Understanding the four-dimensional evolution of the crust, for example, is important, as it can provide critical constraints on the geodynamic history, the lithospheric architecture and development, and potentially identify metallogenic terranes. Constraining the nature and evolution of the crust is not easy, however, given its largely inaccessible nature. Just as the study of basaltic rocks has provided insight into the earth's mantle, granites, provide a window into the middle and lower continental crust. Studies of these rocks are enhanced by the use of isotopic tracers (e.g., U-Pb, Sm-Nd, Lu-Hf), long used to provide constraints on geological processes and components involved in those processes.
-
Fugitive methane emissions, in particular relating to coal seam gas (CSG),has become an emerging issue in Australia over the last few years. There has been significant controversy in US regarding the magnitude of fugitive emissions during production from unconventional gas wells, with large differences in emissions reported between studies using different measurement approaches. . Preliminary research into a small number of Australia's unconventional fields suggest the average fugitive emissions per well are lower than that found in the US. The primary challenge is that the techniques for quantifying methane leakages are still at an early stage of development. Current methods for the small to medium scale use chamber based approaches or vehicles installed with fixed sampling lines and high precisions gas analysers. These technologies are promising, but generally have not been ground truthed in field conditions against known emission rates to estimate effectiveness. They also have limited application in environments where vehicle access is not possible. The Ginniderra facility is being upgraded to support a methane controlled release experiment in 2015. This will enable testing of and verifying methods and technologies for measuring and quantifying methane emissions. To address the absence of suitable techniques for emmission measurement at medium scales, several BOREAL lasers will be deployed which work at scales of 20-1000 m. It is also envisaged airborne techniques utilising laser and hyperspectral will be deployed, along with tomography work utilising multiple concurrent concentration measurements.
-
1 map showing the Acreage Release Title W15-2 in the area of Overlapping Jurisdiction in the Perth Treaty. Requested by RET August 2014. LOSAMBA register 707
-
The mechanism and uplift history of Australia's southeastern highlands has long been debated. End member models account for the topography as a down warped relict of an ancient plateau or a consequence of uplift associated with either rifting along the eastern margin or Cenozoic volcanism. All of these models assume present-day elevation is a consequence of isostatic equilibrium at the base of the crust. An analysis of the relationship between gravity and topography in the spectral domain shows the admittance at wavelengths longer than those controlled by flexure is ~50 mgal km-1. This value is characteristic of dynamic support arising from thermal anomalies beneath the plate predicted by multiple mantle convection simulations and observed over Africa, Antarctic and the Pacific Ocean. Division of long-wavelength filtered gravity by this admittance value suggests the southeastern highlands are supported by 400-900 m. The morphological expressions of this support are the Great Escarpment and major knick zones on rivers such as the Snowy. The temporal evolution of this support can be determined by exploiting longitudinal river profiles since their shape is controlled by uplift and modulated by erosion. By applying the well-known detachment limited stream power law to model erosion uplift histories can be extracted provided erosional parameters can be constrained. By calibrating the erosional parameters using incision rates along the Tumut River and Tumbarumba Creek as well as palaeoelevations of basalt flows the uplift history of the southeastern highlands can ascertained directly from the landscape. Our results show uplift of the southeastern highlands occurred in two phases associated with Cretaceous age rifting resulting in Tasman Sea floor spreading and Cenozoic volcanism. The latter event accounts for the observed amplitude of present-day dynamic topography thereby suggesting Cenozoic uplift occurred from an unperturbed isotactic elevation. Since Cretaceous rifting along the southeastern margin occurred over a cool mantle given the oldest oceanic floor is thinner than the global average it is unlikely that rift related uplift is a consequence of mafic underplating. The most likely driver for this earlier phase of uplift is emergence of eastern Australia from a dynamically drawdown position which has been inferred to explain the widespread mid-Cretaceous marine inundation of Eastern Australia. Therefore it is likely that both uplift events are controlled by changes in the thermal state of the mantle as opposed to changes in crustal thickness and density. This history of vertical motions is consistent with long-term river incision rates, basin sequence stratigraphy and thermochronological studies.
-
Series of information sheets designed to provide landholders and local community with information regarding the activities being underatken as part of the Southern Thomson pre-competitive geoscience project, run in collaboration with the Queensland and New South Wales State Geological Surveys.