From 1 - 10 / 217
  • The Queen Charlotte Fault (QCF) off western Canada is the northern equivalent to the San Andreas Pacific - America boundary. Geomorphology and surface processes associated with the QCF system have been revealed in unprecedented detail by recent seabed mapping surveys. The QCF bisects the continental shelf of British Columbia forming a fault-valley that is visible in multibeam sonar bathymetry data. The occurrence of the fault within a valley, and its association with what appear to be graben structures, suggest the fault may exhibit minor rifting (extension) as well as strike-slip motions in the region offshore from Haida Gwaii (Queen Charlotte Islands). Fault-valley formation, slumping and stranding of submarine canyon thalwegs are geomorphic expressions of QCF tectonism, illustrating the general applications of multibeam technology to marine geophysical research.

  • The Oceanic Shoals Commonwealth Marine Reserve (CMR) (>71,000 km2) is located in the Timor Sea and is part of the National Representative System of Marine Protected Areas of Australia. The Reserve incorporates extensive areas of carbonate banks and terraces that are recognised in the North and North West Marine Region Management Plans as Key Ecological Features (KEFs). Although poorly studied, these features have been identified as potential biodiversity hotspots for the Australian tropical north. As part of the National Environment Research Program (NERP), Geoscience Australia (GA) in collaboration with the Australian Institute of Marine Sciences (AIMS) undertook a marine biodiversity survey in 2012 to improve the knowledge of this area and better understand the importance of these KEFs. Amongst the many activities undertaken, continuous high-resolution multibeam mapping, video and still camera observations, and physical seabed sampling of four areas covering 510 km2 within the western side of the CMR was completed. Multibeam imagery reveals a high geomorphic diversity in the Oceanic Shoals CMR, with numerous banks and terraces, elevated 30 to 65 m above the generally flat seabed (~105 m water depth), that provide hard substrate for benthic communities. The surrounding plains are characterised by fields of depressions (pockmarks) formed in soft silty sediments that are generally barren of any epibenthos. A distinctive feature of many pockmarks is a linear scour mark that extends several tens of metres (up to 150 m) from pockmark depressions. Previous numerical and flume tank simulations have shown that scouring of pockmarks occurs in the direction of the dominant near-seabed flow. These geomorphic features may therefore serve as a proxy for local-scale bottom currents, which may in turn inform on sediment processes operating in these areas and contribute to the understanding of the distribution of biodiversity. This study focused on characterising these seabed scoured depressions and investigating their potential as an environmental proxy for habitat studies. The study used ArcGIS spatial analyst tools to quantify the features and explored their potential relationships with other variables (e.g. multibeam backscatter, regional modelled bottom stress, biological abundance and presence/absence) to provide insight into their development, and contribute to a better understanding of the environment surrounding carbonate banks. Preliminary results show a relationship between pockmark types, i.e. with or without scour mark, and backscatter strength. This relationship suggests some additional shallow sub-surface control, mainly related to the presence of buried carbonate bank. In addition, the results suggest that tidal flows are redirected by the banks, leading to locally varied flow directions and 'shadowing' in the lee of the larger banks. This in turn is likely to have an influence on the observed density and abundance of benthic assemblages.

  • The new acquisition of multibeam bathymetry data along with potential field, seismic data and sediment and rock samples has provided a large quantity of new data in the Northern Lord Howe Rise. A detailed study of the relationships between the surface and sub-surface features over the Capel and Faust basins suggests that seafloor deformation is linked to the underlying basement architecture. Numerous seafloor and sub-surface geological features have been identified and mapped over the study area. Their nature, distribution and relationships have been analysed to propose their formative mechanisms. Most of these features are related to buried igneous intrusions and fluid flow either located within depocentre megasequences or along basement bounding faults. The co-genetic geological features indicate that fluid flow is mainly driven by igneous activity. The ongoing fluid flows, after each magmatic pulse has re-utilised pre-existing fluid conduits. Major depocentres have been identified over the study area and could be prospective for petroleum exploration. Potential source, reservoir and seal rocks are likely to be present in the capel and Faust basins. Volcanic activity has driven the geology and fluid flow over the study area since at least the Upper Cretaceous and has to be considered when assessing the petroleum prospectivity of the Capel and Faust basins and also elsewhere in the Lord Howe Rise.

  • Lord Howe Rise is a deep sea marginal plateau located in the Coral Sea and Tasman Sea, ~125,000 km2 in area and 750 to 1200 m in water depth. An area of the western flank of northern Lord Howe Rise covering ~25,500 km2 was mapped and sampled by Geoscience Australia in 2007 to characterise the deep sea environments and benthic habitats. Geomorphic features in the survey area include ridges, valleys, plateaus and basins. Smaller superimposed features include peaks, moats, holes, polygonal furrows, scarps and aprons. The physical structure and biological composition of the seabed was characterised using towed video and sampling of epifaunal and infaunal organisms. These deep sea environments are dominated by thick depositional soft-sediments (sandy mud), with local outcrops of volcanic rock and mixed gravel-boulders. Ridge, valley and plateau environments were moderately bioturbated but few organisms were directly observed or collected. Volcanic peaks were bathymetrically complex hard-rock structures that supported sparse distributions of suspensions feeders (e.g. cold water corals and glass sponges) and associated epifauna (e.g. crinoids and brittlestars). Isolated outcrops along the sloping edge of one ridge also supported similar assemblages, some with high localised densities of coral-dominated assemblages.

  • This dataset contains hardness classification data from seabed mapping surveys on the Van Diemen Rise in the eastern Joseph Bonaparte Gulf of the Timor Sea. The survey was conducted under a Memorandum of Understanding between Geoscience Australia (GA) and the Australian Institute of Marine Science (AIMS) in two consecutive years 2009 (GA survey number GA-0322 and AIMS survey number SOL4934) and 2010 (GA survey number GA-0325 and AIMS survey number SOL5117). The surveys obtained detailed geological (sedimentological, geochemical, geophysical) and biological data (macro-benthic and infaunal diversity, community structure) for the banks, channels and plains to investigate relationships between the physical environment and associated biota for biodiversity prediction. The surveys also provide Arafura-Timor Sea, and wider northern Australian marine region context for the benthic biodiversity of the Van Diemen Rise. Four study areas were investigated across the outer to inner shelf. Refer to the GA record 'Methodologies for seabed substrate characterisation using multibeam bathymetry, backscatter, and video data: A case study for the Eastern Joseph Bonaparte Gulf, Northern Australia' for further information on processing techniques applied (GeoCat: 74092; GA Record: 2013/11).

  • Abstract: The Collaborative East Antarctic Marine Census (CEAMARC) surveys to the Terre Adélie and George V shelf and margin highlight the requirement for a revised high resolution depth model that can be used as a spatial tool for improving physical models of the region. We have combined available shiptrack and multibeam bathymetry, coastline and land topographic data to develop a new high-resolution depth model, called GVdem. GVdem spans an area 138°E to 148°E longitude and 63°S to 69°S latitude, with a choice of three ESRI grids with cell pixel sizes: 15 arcsec, 9 arcsec and 3.6 arcsec. The revised depth model is an improvement over previously available regional-scale grids, and highlights seabed physiographic detail not previously observed for this part of East Antarctica. In particular, the extent and complexity of the inner-shelf depressions are revealed and their relationship with large shelf basins and adjacent flat-topped banks.

  • Please note: This product has been superseded by 50m Multibeam Dataset of Australia 2018. - This tile contains all multibeam data held by Geoscience Australia on August 2012 within the specified area. The data has been gridded to 50m resolution. Some deeper data has also been interpolated within the mapped area. The image provided can be viewed on the free software CARIS Easyview, available from the CARIS website: www.caris.com under Free Downloads.

  • The Oceanic Shoals Commonwealth Marine Reserve (CMR) (>71,000 km2) is located in the Timor Sea and is part of the National Representative System of Marine Protected Areas of Australia. The Reserve incorporates extensive areas of carbonate banks and terraces that are recognised in the North and North West Marine Region Plans as Key Ecological Features (KEFs). Although poorly studied, these banks and terraces have been identified as potential biodiversity hotspots for the Australian tropical north. As part of the National Environment Research Program Marine Biodiversity Hub, Geoscience Australia in collaboration with the Australian Institute of Marine Science undertook a marine biodiversity survey in 2012 to improve the knowledge of this area and better understand the importance of these KEFs. Amongst the many activities undertaken, continuous high-resolution multibeam mapping, video and still camera observations, and physical seabed sampling of four areas covering 510 km2 within the western side of the CMR was completed. Multibeam imagery reveals a high geomorphic diversity in the Oceanic Shoals CMR, with numerous banks and terraces, elevated 30 to 65 m above the generally flat seabed (~105 m water depth), that provide hard substrate for benthic communities. The surrounding plains are characterised by fields of depressions up to 1 m deep (pockmarks) formed in soft silty sediments that are generally barren of any epibenthos (Fig .1). A distinctive feature of many pockmarks is a linear scour mark that extends several tens of metres (up to 150 m) from pockmark depressions. Previous numerical and flume tank simulations have shown that scouring of pockmarks occurs in the direction of the dominant near-seabed flow. These geomorphic features may therefore serve as a proxy for local-scale bottom currents, which may in turn inform on sediment processes operating in these areas and contribute to the understanding of the distribution of biodiversity. This study focused on characterising these seabed scoured depressions and investigating their potential as an environmental proxy for habitat studies. We used ArcGIS spatial analyst tools to quantify the features and explored their potential relationships with other variables (multibeam backscatter, regional modelled bottom stress, biological abundance and presence/absence) to provide insight into their development, and contribute to a better understanding of the environment surrounding carbonate banks. Preliminary results show a relationship between pockmark types, (i.e. with or without scour mark) and backscatter strength. This relationship suggests some additional shallow sub-surface control, mainly related to the presence of buried carbonate banks. In addition, the results suggest that tidal flows are redirected by the banks, leading to locally varied flow directions and 'shadowing' in the lee of the larger banks. This in turn is likely to have an influence on the observed density and abundance of benthic assemblages.

  • Please note: This product has been superseded by 50m Multibeam Dataset of Australia 2018. - This tile contains all multibeam data held by Geoscience Australia on August 2012 within the specified area. The data has been gridded to 50m resolution. Some deeper data has also been interpolated within the mapped area. The image provided can be viewed on the free software CARIS Easyview, available from the CARIS website: www.caris.com under Free Downloads.

  • This tile contains all multibeam data held by Geoscience Australia on August 2012 within the specified area. The data has been gridded to 50m resolution. Some deeper data has also been interpolated within the mapped area. The image provided can be viewed on the free software CARIS Easyview, available from the CARIS website: www.caris.com under Free Downloads.