From 1 - 10 / 2547
  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.004 degrees (approximately 410m). The data used to produce this grid was acquired in 1972 by the WA Government, and consisted of 45991 line-kilometres of data at 1500m line spacing and 150m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.0005 degrees (approximately 50m) and shows uranium element concentration of the Merredin-Bruce Rock, WA, 1997 survey. The data used to produce this grid was acquired in 1997 by the WA Government, and consisted of UNKNOWN line-kilometres of data at 150m line spacing and 50m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.004 degrees (approximately 410m) and shows potassium element concentration of the Albany-Fraser (Esperance, Malcolm), WA, 1981 survey. The data used to produce this grid was acquired in 1981 by the WA Government, and consisted of 20797 line-kilometres of data at 1500m line spacing and 150m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.004 degrees (approximately 410m) and shows thorium element concentration of the West Eucla Basin (Culver), WA, 1983 survey. The data used to produce this grid was acquired in 1983 by the WA Government, and consisted of 9699 line-kilometres of data at 1500m line spacing and 150m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.000833 degrees (approximately 90m) and shows thorium element concentration of the Sandstone, WA, 2000 survey. The data used to produce this grid was acquired in 2000 by the WA Government, and consisted of 28390 line-kilometres of data at 400m line spacing and 60m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.000833 degrees (approximately 90m) and shows thorium element concentration of the East Yilgarn, WA, 2005 survey. The data used to produce this grid was acquired in 2006 by the WA Government, and consisted of 165726 line-kilometres of data at 400m line spacing and 60m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.000833 degrees (approximately 90m) and shows thorium element concentration of the Throssell, WA, 1998 survey. The data used to produce this grid was acquired in 1998 by the WA Government, and consisted of 39698 line-kilometres of data at 400m line spacing and 60m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.0005 degrees (approximately 50m) and shows potassium element concentration of the Gibb Rock, WA, 1997 survey. The data used to produce this grid was acquired in 1997 by the WA Government, and consisted of 4250 line-kilometres of data at 200m line spacing and 40m terrain clearance.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.000833 degrees (approximately 90m). The data used to produce this grid was acquired in 1996 by the WA Government, and consisted of 128005 line-kilometres of data at 400m line spacing and 60m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.0011 degrees (approximately 120m) and shows potassium element concentration of the Canning Basin (Offshore), WA, 2007 survey. The data used to produce this grid was acquired in 2007 by the WA Government, and consisted of 46773 line-kilometres of data at 750m line spacing and 60m terrain clearance.