spectrometry
Type of resources
Keywords
Publication year
Topics
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This Ashton total dose grid has a cell size of 0.00083 degrees (approximately 91m) and shows the terrestrial dose rate of the Ashton, WA,1994. The data used to produce this grid was acquired in 1993 by the WA Government, and consisted of 51484 line-kilometres of data at 400m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00083 degrees (approximately 91m) and shows uranium element concentration of the Ashton, WA,1994 in units of parts per million (or ppm). The data used to produce this grid was acquired in 1993 by the WA Government, and consisted of 51484 line-kilometres of data at 400m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This Liverpool Plains total count grid geodetic has a cell size of 0.00042 degrees (approximately 43m) and shows the terrestrial dose rate of the Liverpool Plains, NSW, 1995. The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 43192 line-kilometres of data at 200m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This Mt Elizabeth totalcount grid has a cell size of 0.00083 degrees (approximately 91m) and shows the terrestrial dose rate of the Mt Elizabeth, WA,1993. The data used to produce this grid was acquired in 1993 by the WA Government, and consisted of 50696 line-kilometres of data at 400m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.00121 degrees (approximately 124m) and shows potassium element concentration of the NSW DMR, Discovery 2000, 1994-95, AREA E, Northern Parkes in units of percent (or %). The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 122000 line-kilometres of data at 250m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00121 degrees (approximately 124m) and shows thorium element concentration of the NSW DMR, Discovery 2000, 1994-95, AREA E, Northern Parkes in units of parts per million (or ppm). The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 122000 line-kilometres of data at 250m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. The terrestrial dose rate grid is derived as a linear combination of the filtered K, U and Th grids. A low pass filter is applied to this grid to generate the filtered terrestrial dose rate grid. This GSNSW Exploration NSW Area F Brewarrina total count grid geodetic has a cell size of 0.00121 degrees (approximately 125m) and shows the terrestrial dose rate of the NSW DMR, Discovery 2000, 1994-95, AREA F, Brewarrina. The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 51199 line-kilometres of data at 250m line spacing and 60m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.00097 degrees (approximately 100m) and shows potassium element concentration of the NSW DMR, Discovery 2000, 1994-95, AREA B, Darling Basin in units of percent (or %). The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 150000 line-kilometres of data at 400m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.00097 degrees (approximately 100m) and shows thorium element concentration of the NSW DMR, Discovery 2000, 1994-95, AREA B, Darling Basin in units of parts per million (or ppm). The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 150000 line-kilometres of data at 400m line spacing and 80m terrain clearance.
-
The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.00097 degrees (approximately 100m) and shows uranium element concentration of the NSW DMR, Discovery 2000, 1994-95, AREA B, Darling Basin in units of parts per million (or ppm). The data used to produce this grid was acquired in 1995 by the NSW Government, and consisted of 150000 line-kilometres of data at 400m line spacing and 80m terrain clearance.