From 1 - 10 / 74
  • The impacts of climate change on sea level rise (SLR) will adversely affect infrastructure in a significant number of Australian coastal communities. A first-pass national assessment has identified the extent and value of infrastructure potentially exposed to impacts from future climate by utilizing a number of fundamental national scale datasets. A mid-resolution digital elevation model was used to model a series of SLR projections incorporating 100 year return-period storm-tide estimates where available (maximum tidal range otherwise). The modeled inundation zones were overlaid with a national coastal geomorphology dataset, titled the Smartline, which identified coastal landforms that are potentially unstable under the influence of rising sea level. These datasets were then overlain with Geoscience Australia's National Exposure Information System (NEXIS) to quantify the number and value of infrastructure elements (including residential and commercial buildings, roads and rail) potentially vulnerable to a range of sea-level rise and coastal recession estimates for the year 2100. In addition, we examined the changes in exposure under a range of future Australian Bureau of Statistics population scenarios. We found that over 270,000 residential buildings are potentially vulnerable to the combined impacts of inundation and recession by 2100 (replacement value of approximately $A72 billion). Nearly 250,000 residential buildings were found to be potentially vulnerable to inundation only ($A64 billion). Queensland and New South Wales have the largest vulnerability considering both value of infrastructure and the number of buildings affected. Nationally, approximately 33,000 km of road and 1,500 km of rail infrastructure are potentially at risk by 2100.

  • A comprehensive earthquake impact assessment requires an exposure database with attributes that describe the distribution and vulnerability of buildings in the region of interest. The compilation of such a detailed database will require years to develop for a moderate-sized city, let alone on a national scale. To hasten this database development in the Philippines, a strategy has been employed to involve as many stakeholders/organizations as possible and equip them with a standardized tool for data collection and management. The best organizations to tap are the local government units (LGUs) since they have better knowledge of their respective area of responsibilities and have a greater interest in the use of the database. Such a tool is being developed by PHIVOLCS-DOST and Geoscience Australia. Since there are about 1,495 towns and cities in the country with varying financial capacities, this tool should involve the use of affordable hardware and software. It should work on ordinary hardware, such as an ordinary light laptop or a netbook that can easily be acquired by these LGUs. The hardware can be connected to a GPS and a digital camera to simultaneously capture images of structures and their location. The system uses an open source database system for encoding the building attributes and parameters. A user-friendly GUI with a simplified drop-down menu, containing building classification schema, developed in consultation with local engineers, is utilised in this system. The resulting national database is integrated by PHIVOLCS-DOST and forms part of the Rapid Earthquake Damage Assessment System (REDAS), a hazard simulation tool that is also made available freely to partner local government units.

  • Geoscience Australia (GA) is currently undertaking a process of revising the Australian National Earthquake Hazard Map using modern methods and an updated catalogue of Australian earthquakes. This map is a key component of Australia's earthquake loading standard, AS1170.4. Here we present an overview of work being undertaken within the GA Earthquake Hazard Project towards delivery of the next generation earthquake hazard map. Knowledge of the recurrence and magnitude (including maximum magnitude) of historic and pre-historic earthquakes is fundamental to any Probabilistic Seismic Hazard Assessment (PSHA). Palaeoseismological investigation of neotectonic features observed in the Australian landscape has contributed to the development of a Neotectonic Domains model which describes the variation in large intraplate earthquake recurrence behaviour across the country. Analysis of fault data from each domain suggests that maximum magnitude earthquakes of MW 7.0-7.5±0.2 can occur anywhere across the continent. In addition to gathering information on the pre-historic record, more rigorous statistical analyses of the spatial distribution of the historic catalogue are also being undertaken. Earthquake magnitudes in Australian catalogues were determined using disparate magnitude formulae, with many local magnitudes determined using Richter attenuation coefficients prior to about 1990. Consequently, efforts are underway to standardise magnitudes for specific regions and temporal periods, and to convert all earthquakes in the catalogue to moment magnitude. Finally, we will review the general procedure for updating the national earthquake hazard map, including consideration of Australian-specific ground-motion prediction equations. We will also examine the sensitivity of hazard estimates to the assumptions of certain model components in the hazard assessment.

  • Imagine you are an incident controller sitting in front of a computer screen that is showing you where a fire that's just started is likely to head. Not just that, but also what houses and other structures in the fire's path are likely to burn, and even the number and type of people living in the area - children, adults, elderly. In addition imagine that you can quantify the uncertainty in both the fire weather and also the state of the vegetation so as to deliver a range of simulations relating to the expected firespread which allow the incident controller to address 'what if' scenarios. Think of the advantages of such a program in making speedy, accurate decisions about where best to send fire trucks and fire-suppression aircraft; in being able to issue timely, locality-specific warning messages; in judging whether this fire will become so bad that it might warrant recommending not only an early, orderly evacuation of communities in its way, but also identifying the least risky roads for people to get to safety. A computer program that will not only be able to help with all this and more in a fire, but will also be capable of use at any time in identifying what structures, streets and communities would be at risk should a fire occur, enabling those at risk to undertake remedial work around their properties in advance to make them better fire-ready. This will be achieved by building up a library of possible / credible fire impact scenarios based on the knowledge of observed (historical) severe fire weather conditions as well as vegetation information (fuel type/amount/moisture).

  • Disaster management is most effective when it is based on evidence. Evidence-based disaster management means that decision makers are better informed, and the decision making process delivers more rational, credible and objective disaster management outcomes. To achieve this, fundamental data needs to be translated into information and knowledge, before it can be put to use by the decision makers as policy, planning and implementation. Disaster can come in all forms: rapid and destructive like earthquakes and tsunamis, or gradual and destructive like drought and climate change. Tactical and strategic responses need to be based on the appropriate information to minimise impacts on the community and promote subsequent recovery. This implies a comprehensive supply of information, in order to establish the direct and indirect losses, and to establish short and long term social and economic resilience. The development of the National Exposure Information System (NEXIS) is a significant national project being undertaken by Geoscience Australia (GA). NEXIS collects, collates, manages and provides the information required to assess multi-hazard impacts. Exposure information may be defined as a suite of information relevant to all those involved in a natural disaster, including the victims, the emergency services, and the policy and planning instrumentalities.

  • Note: A more recent version of this product is available. This dataset contains spatial locations in point format as a representation of Electricity Transmission Substations in Australia. For government use only. Access through negotiation with Geoscience Australia

  • Evidence based disaster management enables decision makers to manage more effectively because it yields a better informed understanding of the situation. When based on evidence, the decision making process delivers more rational, credible and objective disaster management decisions, rather than those influenced by panic. The translation of fundamental data into information and knowledge is critical for decision makers to act and implement the decisions. The evidence from appropriate information helps both tactical and strategic responses to minimise impacts on community and promote recovery. The information requirements of such a system are quite comprehensive in order to estimate the direct and indirect losses; the short and long term social and economic resilience. Disasters may be of rapid onset in nature like earthquakes, tsunamis and blast. Others are slow onset such those associated with gradual climate change. Climate change has become a real challenge for all nations and the early adaptors will reduce risk from threats such as increased strength of tropical cyclones, storm surge inundations, floods and the spread of disease vectors. The Australian Government has recognised the threats and prioritised adaptation as an opportunity to enhance the nation's existing infrastructure and thereby reduce risk. A thorough understanding of the exposure under current and future climate projections is fundamental to this process of future capacity building. The nation's exposure to these increased natural hazards includes all sectors from communities to businesses, services, lifeline utilities and infrastructure. The development of a National Exposure Information System (NEXIS) is a significant national capacity building task being undertaken by Geoscience Australia (GA). NEXIS is collecting, collating, managing and providing the exposure information required to assess multi-hazard impacts.

  • Crucial elements for assessing earthquake risk are exposure and vulnerability. In assessing earthquake risk to the Australian built environment we need to know what is exposed to earthquake ground motion and also how vulnerable the exposed infrastructure is to the severity of shaking. While central business district (CBD) buildings make up a relatively small proportion of Australia's built environment their function and the business activity they support is vital to Australia's economy. This paper describes an ongoing effort by the Australian Government to undertake engineering and architectural surveys of buildings within state capital CBDs. With funding from the Attorney-General's Department Geoscience Australia has recently completed a survey of the Melbourne CBD and will complete surveys of the Sydney, Adelaide and Brisbane CBDs this financial year. Survey teams comprise a structural engineer and a GIS operator who populates survey fields on a handheld computer. Approximately 90 survey data fields are incorporated in the template to enable capture of the variety in building features. The fields cover building characteristics that are understood to influence earthquake vulnerability. A summary of the survey activity undertaken to date is presented here along with some examples of the type of data that is being collected.

  • Hydrometeorological events make up or contribute to a majority of disasters in Australia and around the world. Scientists expect climate change will accelerate the frequency and intensity of these events in the future. Information on the location and characteristics of the built and social environment combined with hazard modelling and spatial analysis can facilitate the identification of buildings, people and infrastructure exposed to a particular natural hazard event. This information informs evidence based decision making and future planning to aid in the preparedness, response and recovery to severe hazard events. In Australia, the National Exposure Information System (NEXIS) is a significant national project being undertaken by Geoscience Australia (GA). In 2006 GA embarked on the development of NEXIS in response to the Council of Australian Governments (COAG) reform commitment on Australian's ability to manage natural disasters and other emergencies. The COAG commitment called for the establishment of a 'nationally consistent system of data collection, research and analysis to ensure a sound knowledge base on natural disasters and disaster mitigation' (DOTARS 2002). NEXIS database contains information on buildings, people, businesses and infrastructure and is derived from publicly available demographic, structural, economic and statistical data. Exposure profiles contain information on: building type, size, construction materials, age, replacement costs and population demographics for all residential, commercial and industrial buildings in Australia. Aggregated exposure information underpins risk assessment, emergency management, climate change adaptation, urban planning, insurance industry and research to help assist evidence based decision making. NEXIS development and operationalisation is crucial to support the decision makers and underpins community safety, emergency management and disaster risk reduction initiatives Australia This paper will discuss the development of NEXIS and its application in several national projects with the Department of Climate Change Energy and Efficiency (DCCEE) in Australia and recent national disaster impacts assessments on: Queensland tropical cyclone Yasi, Victoria bushfires and the Queensland floods.

  • In 2008, the Australian Parliament debated and passed the first national legislation to establish a title system of access and property rights for greenhouse gas (CO2) storage in offshore waters - the Offshore Petroleum and Greenhouse Gas Storage Act 2006 (the Act). The Act provides for petroleum titles and greenhouse gas storage titles to coexist. To manage possible interactions between petroleum and CO2 storage operations, the Act introduced a test to determine whether activities under one title would pose a significant risk of a significant adverse impact (SROSAI test) on pre-existing rights and assets under the other title. Where petroleum and CO2 storage projects are proposed in the same area, the Act provides for commercial agreements between petroleum and CO2 storage proponents. It is only in the absence of any such commercial agreements that the regulator will have to decide whether an activity under one title would pose a significant risk of a significant adverse impact on the operations within the other title area. The SROSAI test is based on three core parameters: - the probability of the occurrence of an adverse impact; - the cost of the adverse impact on the project; and - the total resource value of the project. In estimating the cost of an adverse impact the regulator will take into consideration whether the adverse impact will result in: - any increase in capital or operating costs; - any reduction in rate of recovery of petroleum or rate of injection of CO2; - any reduction in the quantity of the petroleum to be recovered or CO2 stored. Safety and environmental impacts would be considered in estimating costs, only if those impacts would contribute to an increase in capital or operating costs, or reduction in petroleum recovery or CO2 injection. Etc