Web Service
Type of resources
Keywords
Publication year
Service types
Topics
-
This dynamic map service will be used to provide reference layers for the Department of Industry for use in the Multi Criteria Site Analysis (MCSA) for the RadWaste Project. This MCSA will be used to determine an appropriate location for establishing a radioactive waste storage facility.
-
This web service provides access to the Geoscience Australia (GA) ISOTOPE database containing compiled age and isotopic data from a range of published and unpublished (GA and non-GA) sources. The web service includes point layers (WFS, WMS, WMTS) with age and isotopic attribute information from the ISOTOPE database, and raster layers (WMS, WMTS, WCS) comprising the Isotopic Atlas grids which are interpolations of the point located age and isotope data in the ISOTOPE database.
-
The Dynamic Land Cover Dataset Version 2 is a suite of land cover information products from Geoscience Australia (GA). These standard information products deliver International Standards Organisation (ISO) compliant land cover maps across the Australian landmass. The resulting datasets provide a consistent series of maps that show how Australian land cover is changing over time. The first product in this suite, DLCDv1, was published in 2011 and was based on 250 metre resolution MODIS Enhanced Vegetation Index (EVI) data acquired between April 2000 and April 2008. The product described in this document, DLCDv2, consists of a series of 12 maps each based on 2 years of MODIS data. The 12 maps cover the period between 2002 - 2014.
-
This OGC conformant web service delivers data from Geoscience Australia's Reservoir, Facies and Hydrocarbon Shows (RESFACS) Database. RESFACS is an interpretative reservoir/facies database containing depth-based information regarding permeability, porosity, shows, depositional environment and biostratigraphy of petroleum wells.
-
This grid dataset is an estimation of the relative surface potential for recharge within the Nulla Basalt Province. This process combined numerous factors together as to highlight the areas likely to have higher potential for recharge to occur. Soil permeability and surface geology are the primary inputs. Vegetation and slope were excluded from consideration, as these were considered to add too much complexity. Furthermore, this model does not include rainfall intensity – although this is known to vary spatially through average rainfall grids, this model is a depiction of the ground ability for recharge to occur should a significant rainfall event occur in each location. The relative surface potential recharge presented is estimated through a combination of soil and geological factors, weighting regions that are considered likely to have greater potential for recharge (e.g. younger basalts, vent-proximal facies, and highly permeable soils). Near-surface permeability of soil layers has been considered as a quantified input to the ability for water to infiltrate soil strata. It was hypothesised that locations proximal to volcanic vents would be preferential recharge sites, due to deeply penetrative columnar jointing. This suggestion is based on observations in South Iceland, where fully-penetrating columnar joint sets are more prevalent in proximal facies compared to distal facies in South Iceland (Bergh & Sigvaldson 1991). To incorporate this concept, preferential recharge sites are assumed to be within the polygons of vent-proximal facies as derived from detailed geological mapping datasets. Remaining geology has been categorised to provide higher potential recharge through younger lava flows. As such, a ranking between geological units has been used to provide the variation in potential recharge estimates. <b>Reference</b> Bergh, S. G., & Sigvaldason, G. E. (1991). Pleistocene mass-flow deposits of basaltic hyaloclastite on a shallow submarine shelf, South Iceland. Bulletin of Volcanology, 53(8), 597-611. doi:10.1007/bf00493688
-
This dataset includes point estimates of groundwater recharge in mm/year. Recharge rates have been estimated at monitoring bore locations in the basaltic aquifers of the Nulla and McBride basalt provinces. Recharge estimates have been calculated using the “chloride mass balance” method. The chloride mass balance process assumes that the chloride ion is a conservative tracer in precipitation, evapotranspiration, recharge and runoff; and that all the chloride is from rainfall, instead of for example halite saturation or dissolution processes. So the volumetric water balance and the flux of chloride balance must both be true. Assuming that runoff and evapotranspiration are negligible (so approximated by zero), the equation is simplified: Water balance P=ET+R+Q Water balance multiplied by chloride concentrations (chloridefluxbalance) P∙Cl_ppt=ET∙Cl_ET+R∙Cl_gw+Q∙Cl_riv | ΔCl_reac≈0 Assumptions to simplify equation P∙Cl_ppt=R∙Cl_gw | Q≈0 & ET≈0 Rearranging for recharge rate (unknown) R=P∙(Cl_ppt)/(Cl_gw ) | Q≈0 & ET≈0 Where P = precipitation rate; ET = evapotranspiration rate; R = recharge rate; Q = runoff to streams; Clppt = concentration of Cl in precipitation; ClET = concentration of chloride in evapotranspiration; Clgw = concentration of Cl in groundwater; Clriv = concentration of chloride in river runoff; ΔClreac = change in chloride concentrations from reactions.
-
This grid dataset is an estimation of the relative surface potential for recharge within the McBride Basalt Province. This process combined numerous factors together as to highlight the areas likely to have higher potential for recharge to occur. Soil permeability and surface geology are the primary inputs. Vegetation and slope were excluded from consideration, as these were considered to add too much complexity. Furthermore, this model does not include rainfall intensity – although this is known to vary spatially through average rainfall grids, this model is a depiction of the ground ability for recharge to occur should a significant rainfall event occur in each location. The relative surface potential recharge presented is estimated through a combination of soil and geological factors, weighting regions that are considered likely to have greater potential for recharge (e.g. younger basalts, vent-proximal facies, and highly permeable soils). Near-surface permeability of soil layers has been considered as a quantified input to the ability for water to infiltrate soil strata. It was hypothesised that locations proximal to volcanic vents would be preferential recharge sites, due to deeply penetrative columnar jointing. This suggestion is based on observations in South Iceland, where fully-penetrating columnar joint sets are more prevalent in proximal facies compared to distal facies in South Iceland (Bergh & Sigvaldson 1991). To incorporate this concept, preferential recharge sites are assumed to be within the polygons of vent-proximal facies as derived from detailed geological mapping datasets. Remaining geology has been categorised to provide higher potential recharge through younger lava flows. As such, a ranking between geological units has been used to provide the variation in potential recharge estimates. <b>References</b> Bergh, S. G., & Sigvaldason, G. E. (1991). Pleistocene mass-flow deposits of basaltic hyaloclastite on a shallow submarine shelf, South Iceland. Bulletin of Volcanology, 53(8), 597-611. doi:10.1007/bf00493688
-
This service provides header and observation data for gravity stations located throughout continental Australia and Remote Offshore Territories. Data sources include the Australian National Gravity Database (ANGD) and the Australian Fundamental Gravity Network (AFGN) maintained by Geoscience Australia (GA). Data has been obtained by Surveyors, Commonwealth and state/territory Governments, private companies, and educational institutions. Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose.
-
This service provides header and observation data for gravity stations located throughout continental Australia and Remote Offshore Territories. Data sources include the Australian National Gravity Database (ANGD) and the Australian Fundamental Gravity Network (AFGN) maintained by Geoscience Australia (GA). Data has been obtained by Surveyors, Commonwealth and state/territory Governments, private companies, and educational institutions. Gravity data measures small changes in gravity due to changes in the density of rocks beneath the Earth's surface. The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose.
-
This is a dataset of the world divided into 1° by 1° blocks, in the WGS84 datum. The blocks are organised and named using the International UTM Map Index and contain attribution concerning name, area and point of origin. The dataset is intended to assist with offshore fisheries, petroleum and minerals licensing by providing a regular graticulated system of blocks. The blocks were created using the same method as used for the Australian Offshore Minerals Blocks, and have used the same naming convention, which is derived from the map sheets. The blocks have been densified with a vertex added every 30 seconds to ensure they display correctly regardless of map projection.