From 1 - 10 / 117
  • This web service provides access to groundwater raster products for the Upper Burdekin region, including: inferred relative groundwater recharge potential derived from weightings assigned to qualitative estimates of relative permeability based on mapped soil type and surface geology; Normalised Difference Vegetation Index (NDVI) used to map vegetation with potential access to groundwater in the basalt provinces, and; base surfaces of basalt inferred from sparse available data.

  • Analytical results and associated sample and analysis metadata from the analysis of minerals in earth material samples.

  • Demand for critical minerals, vital for advanced technologies, is increasing. This study shows that Australia’s richly endowed geological provinces contain numerous undeveloped or abandoned mineral occurrences that could potentially lead to new economic resources. Three study areas were assessed for critical mineral occurrences through database interrogation and literature review, namely the Barkly-Isa-Georgetown (BIG), Darling-Curnamona-Delamerian (DCD) and Officer-Musgrave (OM) project areas. The study found approximately 20,000 mineral occurrences across the three areas, with just over half occurring in the DCD region. Critical minerals were recognised in ~10% of all occurrences in BIG, ~10% in DCD and 70% in OM. Gold and base metal occurrences comprise 48% (OM), 81% (DCD) and 82% (BIG) of all occurrences in the study areas, with these metals in the DCD and BIG historically and presently important. This large-scale analysis and literature review of Australia’s forgotten mineral discoveries identifies potential new sources of critical minerals and, with the addition of mineralisation style to the data, contributes to predictive exploration methodology that will further unlock the nation’s critical mineral potential. These data are available through the Exploring for the Future portal (https://portal.ga.gov.au/persona/eftf). <b>Citation:</b> Kucka C., Senior A. & Britt A., 2022. Mineral Occurences: Forgotten discoveries providing new leads for mineral supply. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146983

  • The structural evolution of the South Nicholson region is not well understood, hindering full appraisal of the resource potential across the region. Here, we outline new insights from a recent deep-reflection seismic survey, collected as part of the Australian Government’s Exploring for the Future initiative. The new seismic profiles, and new field observations and geochronology, indicate that the South Nicholson region was characterised by episodic development of a series of ENE-trending half grabens. These graben structures experienced two major episodes of extension, at ca. 1725 Ma and ca. 1640 Ma, broadly correlating with extensional events identified from the Lawn Hill Platform and the Mount Isa Province to the east. Southward stratal thickening of both Calvert and Isa Superbasin sequences (Paleoproterozoic Carrara Range and McNamara groups, respectively) into north-dipping bounding faults is consistent with syndepositional extension during half graben formation. Subsequent basin inversion, and reactivation of the half graben bounding faults as south-verging thrusts, appears to have been episodic. The observed geometry and offset are interpreted as the cumulative effect of multiple tectonic events, including the Isan Orogeny, with thrust movement on faults occurring until at least the Paleozoic Alice Springs Orogeny. <b>Citation:</b> Carson, C.J.. Henson, P.A., Doublier, M.P., Williams, B., Simmons, J., Hutton, L. and Close, D., 2020. Structural evolution of the South Nicholson region: insight from the 2017 L210 reflection seismic survey. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • This fact sheet sets out the goals, vision and benefits of the Exploring for the Future program, as well as the ways we conduct fieldwork and what the information gathered is used for.

  • This OGC conformant web service delivers data from Geoscience Australia's Reservoir, Facies and Hydrocarbon Shows (RESFACS) Database. RESFACS is an interpretative reservoir/facies database containing depth-based information regarding permeability, porosity, shows, depositional environment and biostratigraphy of petroleum wells.

  • This service delivers data from Geoscience Australia's Petroleum Systems database, a compilation of information from summary reports on petroleum systems by basin across Australia, integrated with data from other Geoscience Australia databases including provinces, stratigraphy and boreholes. The data provided by this service is intended for use in the Petroleum Systems Summary tool on the Geoscience Australia Portal. The tool's aim is to provide high-level information of the current understanding of key petroleum systems for areas of interest and assist geological studies by summarising and interpreting key datasets related to conventional and unconventional hydrocarbon exploration. Each petroleum systems summary includes a synopsis of the basin and key figures detailing the basin outline, major structural components, data availability, petroleum systems events chart and stratigraphy, and a précis of the key elements of source, reservoir and seal.

  • In June 2017, AAM completed field and aerial surveys over ~8,000 sqkm to generate orthoimagery and high definition level 1 classified LiDAR data to GA’s specifications. Under GA Deed CMC G3298A Contract D2017-43573 - Kimberley East. LiDAR and Imagery was captured over the site in separate flights between the 9th and 17th June 2017, a small gap was captured 9th July, the LiDAR and imagery have been controlled by 30 new control points This data supplied in this delivery is the Level 1 Classified las v1.4 dataset in 2km tiles. The height datum is Ellipsoidal.

  • Underground hydrogen storage (UHS) in halite caverns will become an essential technology to supplement energy supply networks. This study examines the feasibility of UHS in the offshore Polda Basin by integrating previous seismic interpretation, well data and regional geology information. The Mercury structure in the central – east Polda Basin has extensive halite accumulations (both vertically and laterally) and has been identified as an area with high UHS potential. The net halite thickness is more than 1000 m, while the total potential area is about 217 km². Well data from the Mercury 1 well show a low thermal gradient (1.7–2.1 °C/100m) and overburden pressure gradient of approximately 18 ppg, providing effective gas operation pressure for UHS. To illustrate the feasibility of UHS, a conceptual design of a halite cavern is provided for a depth range of 1650–2000 m. Caverns with diameters of 60 m and 100 m are estimated to have storage capacities of approximately 240 GWh and 665 GWh, respectively. Multiple halite caverns could be constructed within the extensive Mercury halite accumulation. Further investigation into the potential for salt accumulations in the onshore Polda Basin is recommended. <b>Citation: </b>Feitz A. J., Wang L., Rees S. & Carr L., 2022. Feasibility of underground hydrogen storage in a salt cavern in the offshore Polda Basin. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146501

  • A regional hydrocarbon prospectivity study was undertaken in the onshore Canning Basin in Western Australia as part of the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to driving investment in resource exploration. As part of this program, significant work has been carried out to deliver new pre-competitive data including new seismic acquisition, drilling of a stratigraphic well, and the geochemical analysis of geological samples recovered from exploration wells. A regional, 872 km long 2D seismic line (18GA-KB1) acquired in 2018 by Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA), images the Kidson Sub-basin of the Canning Basin. In order to provide a test of geological interpretations made from the Kidson seismic survey, a deep stratigraphic well, Barnicarndy 1, was drilled in 2019 in a partnership between Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA) in the Barnicarndy Graben, 67 km west of Telfer, in the southwest Canning Basin. Drilling recovered about 2100 m of continuous core from 580 mRT to the driller’s total depth (TD) of 2680.53 mRT. An extensive analytical program was carried out to characterise the lithology, age and depositional environment of these sediments. Geoscience Australia commissioned a fluid inclusion stratigraphy (FIS) study in 2020 on downhole samples in Barnicarndy 1. Here, volatile components ostensibly trapped with fluid inclusions are released and analysed revealing the level of exposure of the well section to migrating fluids. FIS analysis was performed on a total of 24 cuttings and 156 cores between 240 metres and 2679.1 metres base depth (Grant Group to Yeneena Basin Basement). The results of the study are found in the accompanying documents and can also be accessed through the Western Australian Petroleum and Geothermal Information Management System (WAPIMS) platform (https://wapims.dmp.wa.gov.au/WAPIMS/Search/Wells).