From 1 - 10 / 1389
  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.001 degrees (approximately 110m) and shows thorium element concentration of the Georgina, NT, 2002 survey. The data used to produce this grid was acquired in 2002 by the NT Government, and consisted of 91100 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.001 degrees (approximately 110m) and shows potassium element concentration of the Alligator River, NT, 1976 survey. The data used to produce this grid was acquired in UNKNOWN by the NT Government, and consisted of 21700 line-kilometres of data at 300m line spacing and UNKNOWNm terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of Potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric uranium grid has a cell size of 0.008 degrees (approximately 870m) and shows uranium element concentration of the McArthur Basin(Tanumbirin, Bauhinia D, Robinson R, Walhallow), NT, 1977 survey. The data used to produce this grid was acquired in 1977 by the NT Government, and consisted of 38342 line-kilometres of data at 3000m line spacing and 150m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric thorium grid has a cell size of 0.001 degrees (approximately 110m) and shows thorium element concentration of the Litchfield South, NT, 1984 survey. The data used to produce this grid was acquired in 1984 by the NT Government, and consisted of 26132 line-kilometres of data at 500m line spacing and 100m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.0008 degrees (approximately 90m) and shows potassium element concentration of the Georgina, NT, 2002 survey. The data used to produce this grid was acquired in 2002 by the NT Government, and consisted of 91100 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.004 degrees (approximately 440m). The data used to produce this grid was acquired in 1974 by the NT Government, and consisted of 35200 line-kilometres of data at 1500m line spacing and 150m terrain clearance.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.001 degrees (approximately 110m). The data used to produce this grid was acquired in 2002 by the NT Government, and consisted of 91100 line-kilometres of data at 400m line spacing and 80m terrain clearance.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.004 degrees (approximately 440m). The data used to produce this grid was acquired in 1976 by the NT Government, and consisted of 21893 line-kilometres of data at 1500m line spacing and 150m terrain clearance.

  • The radiometric, or gamma-ray spectrometric method, measures the natural variations in the gamma-rays detected near the Earth's surface as the result of the natural radioactive decay of potassium (K), uranium (U) and thorium (Th). The data collected are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This radiometric potassium grid has a cell size of 0.001 degrees (approximately 110m) and shows potassium element concentration of the Groote Eyelandt, NT, 1993 survey. The data used to produce this grid was acquired in 1993 by the NT Government, and consisted of 13141 line-kilometres of data at 500m line spacing and 100m terrain clearance.

  • Total magnetic intensity (TMI) data measures variations in the intensity of the Earth's magnetic field caused by the contrasting content of rock-forming minerals in the Earth crust. Magnetic anomalies can be either positive (field stronger than normal) or negative (field weaker) depending on the susceptibility of the rock. The data are processed via standard methods to ensure the response recorded is that due only to the rocks in the ground. The results produce datasets that can be interpreted to reveal the geological structure of the sub-surface. The processed data is checked for quality by GA geophysicists to ensure that the final data released by GA are fit-for-purpose. This magnetic grid has a cell size of 0.004167 degrees (approximately 460m). The data used to produce this grid was acquired in UNKNOWN by the UNKNOWN Government, and consisted of UNKNOWN line-kilometres of data at 20000m line spacing and UNKNOWNm terrain clearance.