From 1 - 10 / 32
  • Rock properties provide the vital link between observed geophysical data and interpreted geology. Geoscience Australia has periodically made measurements of rock properties to support various investigations into the composition and structure of the subsurface. The Rock Properties Project consolidates this information into a single database structure and makes it accessible to external clients via a web delivery application. We have chosen to initially concentrate on mass density and magnetic properties, as these are of prime importance to the important gravity and magnetic datasets maintained for the Australian region by Geoscience Australia. Additional property types and more extensive datasets will be added over time.

  • A reconnaissance geological and radiometric survey of the Mt. Cavenagh area was carried out by B.P. Walpole and J. Sleis of the geological section and J. Daly and D. Dyson of the geophysical section of the Bureau of Mineral Resources. The objects of the survey were to examine reported occurrences of radioactive minerals in this area and to determine whether further prospecting of the area for radioactive orebodies was warranted. The general geology of the area, and the economic geology of the six prospects examined, are described in this report.

  • In connection with the search for uranium in Australia samples of mill products from producing mines have been examined for radioactivity by the Bureau. Amongst these were several samples from mines at Broken Hill. A preliminary examination showed that the uranium content of the samples was certainly much less than 0.01 per cent. To obtain more accurate data, the samples were re-examined by more sensitive methods, and the results of these are tabulated below.

  • A brief geological examination of this deposit was made by the writer and D.N. Smith between 18th and 20th June, 1952. The deposit had been previously examined in 1951 by J. Daly of the Geophysical Section, Bureau of Mineral Resources, and by J.C. Lloyd of the N.S.W. Mines Department and the results of their investigation were available for reference. The radioactive area examined during the present investigation was an area of about 1/4 square mile of the volcanic flow in the north-eastern corner of portion 39. Samples of the quartz veinlets and of the volcanic rocks were collected, and tests carried out with the Laboratory Geiger counter in Canberra indicate that both are radioactive and that the radioactivity is slightly greater in the sample from the quartz veinlets.

  • Like many of the basins along Australia's eastern seaboard, there is currently only a limited understanding of the geothermal energy potential of the New South Wales extent of the Clarence-Moreton Basin. To date, no study has examined the existing geological information available to produce an estimate of subsurface temperatures throughout the region. Forward modelling of a basin structure using its expected thermal properties is the process generally used in geothermal studies to estimate temperatures at depth in the Earth's crust. This process has been validated for one-dimensional models such as a drill hole, where extensive information can be provided for a specific location. The process has also seen increasing use in more complex three-dimensional (3D) models, including in areas of sparse data. The overall uncertainties of 3D models, including the influence of the broad assumptions required to undertake them, are generally only poorly examined by their authors and sometimes completely ignored. New methods are presented in this study which will allow estimates and uncertainties to be addressed in a quantitative and justifiable way. Specifically, this study applies Monte Carlo Analysis to constrain uncertainties through random sampling of statistically congruent populations. Particular focus has been placed on the uncertainty in assigning thermal conductivity values to complex and spatially extensive geological formations using only limited data. These geological formations will typically consist of a range of lithological compositions, resulting in a range of spatially variable thermal conductivity values. As a case study these new methods are then applied to the New South Wales extent of the Clarence-Moreton Basin. The structure of the basin has been built using Intrepid Geophysics' 3D GeoModeller software package using data from existing petroleum drill holes, surface mapping and information derived from the FrOGTech SEEBASE study. A range of possible lithological compositions was determined for each of the major geological layers through application of compositional data analysis, using data from deep wells only (>2000 m). In turn, a range of possible thermal properties was determined from rock samples held by the New South Wales Department of Primary Industries and analysed at the Geoscience Australia laboratories. These populations of values were then randomly sampled to create 120 different forward models which were computed using SHEMAT. The results of these have been interpreted to present the best estimate of the expected subsurface temperatures of the basin, and their uncertainties, given the current state of knowledge. These results suggest that the Clarence-Moreton Basin has a moderate geothermal energy potential within an economic drilling depth. The results also show a significant degree of variability between the different thermal modelling runs, which is likely due to the limited data available for the region.

  • Accurate seismic velocity model is essential for depth conversion and rock property determination in the context of fluid flow modelling to support site selection for secure storage of carbon dioxide. The Bonaparte CO2 Storage project funded by the Australian Government will assess the carbon dioxide geological storage potential of two blocks in the Petrel Sub-basin on the Australian NW Margin. These blocks were offered as part of the 2009 release of offshore areas for greenhouse gas (GHG) storage assessment. The Petrel Sub-basin is a northwest-trending Paleozoic rift within the southern Bonaparte Basin. The geological reservoirs of interest include the Jurassic Plover Formation and the Early Cretaceous Sandpiper Sandstone. Primary and secondary seals of interest include the Late Jurassic Frigate Formation and the Cretaceous Bathurst Island Group (regional seal). Trapping mechanisms for injected CO2 may include faulted anticlines, stratigraphic traps, salt diapirs and/or migration dissolution and residual trapping. Water depths are generally less than 100m and depths to reservoir/seal pairs range between 800-2500m below the sea surface. All three main types of seismic velocity measurements are available within the area of our study: velocities derived from stacking of multi-channel reflection seismic data; velocities determined in the process of ray tracing modelling of large offset refraction data acquired by the ocean bottom seismographs (OBS) along the coincident reflection/refraction transect, and velocities from well log (sonic, vertical seismic profiling and check shot) measurements.

  • Six wax-sealed samples of cores were received with a request that they be tested for porosity, permeability and oil and water content. Testing was carried out by Messrs. N.V.H. Hoyling and H.S. Taylor-Rogers at the Newcastle Technical College - to the Principal and Staff of which institution grateful acknowledgment of their co-operation and utilization of their apparatus and laboratory space is made.

  • The Officer Basin spanning South Australia and Western Australia is the focus of a regional stratigraphic study being undertaken as part of the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to increasing investment in resource exploration in Australia. Despite numerous demonstrated oil and gas shows, the Officer Basin remains a frontier basin for energy exploration with significant uncertainties due to data availability. Under the EFTF Officer-Musgrave Project, Geoscience Australia acquired new geomechanical rock property data from forty core samples in five legacy stratigraphic and petroleum exploration wells that intersected Paleozoic and Neoproterozoic aged intervals. These samples were subjected to unconfined compressive rock strength tests, Brazilian tensile strength tests and laboratory ultrasonic measurements. Petrophysical properties were also characterised via X-ray computerised tomography scanning, grain density and porosity-permeability analysis. Accurate characterisation of static geomechanical rock properties through laboratory testing is essential. In the modern exploration environment, these datasets are a precompetitive resource that can simplify investment decisions in prospective frontier regions such as the Officer Basin. Appeared in The APPEA Journal 62 S385-S391, 13 May 2022

  • During an inspection of limestone deposits at White Rocks on 2/11/50, samples of weathered granite were collected from a quarry on the eastern side of the Queanbeyan-Cooma road, about 150 yards south of the two-mile peg. This quarry is in the Queanbeyan Clay Deposit described by W.G. Woolnough in departmental reports dated 17/2/28 and 20/6/28. If the rock can be economically crushed and worked, it may be suitable for the production of sewer-pipes and other impervious ware. The samples, reserves, and suitable uses for the granite are described in this report.

  • Major oxides provide valuable information about the composition, origin, and properties of rocks and regolith. Analysing major oxides contributes significantly to understanding the nature of geological materials and processes (i.e. physical and chemical weathering) – with potential applications in resource exploration, engineering, environmental assessments, agriculture, and other fields. Traditionally most measurements of oxide concentrations are obtained by laboratory assay, often using X-ray fluorescence, on rock or regolith samples. To expand beyond the point measurements of the geochemical data, we have used a machine learning approach to produce seamless national scale grids for each of the major oxides. This approach builds predictive models by learning relationships between the site measurements of an oxide concentration (sourced from Geoscience Australia’s OZCHEM database and selected sites from state survey databases) and a comprehensive library of covariates (features). These covariates include: terrain derivatives; climate surfaces; geological maps; gamma-ray radiometric, magnetic, and gravity grids; and satellite imagery. This approach is used to derive national predictions for 10 major oxide concentrations at the resolution of the covariates (nominally 80 m). The models include the oxides of silicon (SiO2), aluminium (Al2O3), iron (Fe2O3tot), calcium (CaO), magnesium (MgO), manganese (MnO), potassium (K2O), sodium (Na2O), titanium (TiO2), and phosphorus (P2O5). The grids of oxide concentrations provided include the median of multiple models run as the prediction, and lower and upper (5th and 95th) percentiles as measures of the prediction’s uncertainty. Higher uncertainties correlate with greater spreads of model values. Differences in the features used in the model compared with the full feature space covering the entire continent are captured in the ‘covariate shift’ map. High values in the shift model can indicate higher potential uncertainty or unreliability of the model prediction. Users therefore need to be mindful, when interpreting this dataset, of the uncertainties shown by the 5th-95th percentiles, and high values in the covariate shift map. Details of the modelling approach, model uncertainties and datasets are describe in an attached word document “Model approach uncertainties”. This work is part of Geoscience Australia’s Exploring for the Future program that provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. These data are published with the permission of the CEO, Geoscience Australia.