Seabed
Type of resources
Keywords
Publication year
Service types
Topics
-
The Geoscience Australia’s Semi-automated Morphological Mapping Tools (GA-SaMMT) were developed as ArcGIS Pro Python tools using Python 3+ to map ten bathymetric high and eight bathymetric low Morphology Features (defined in Dove et al., 2020; cf. Nanson et al., 2023). These tools comprise seven toolboxes: 1. The BathymetricHigh.pyt toolbox is used to map bathymetric high features, and includes three tools: (i) TPI Tool Bathymetric High; (ii) TPI LMI Tool Bathymetric High; (iii) and Openness Tool Bathymetric High. 2. The BathymetricLow.pyt toolbox is used to map bathymetric low features, and includes three tools: (i) TPI Tool Bathymetric Low; (ii) TPI CI Tool Bathymetric Low; and (iii) Openness Tool Bathymetric Low. 3. The AddAttributes.pyt toolbox is used to calculate attributes for bathymetric high and low features, and includes six tools: (i) Add Shape Attributes High Tool; (ii) Add Shape Attributes Low Tool; (iii) Add Topographic Attributes High Tool; (iv) Add Topographic Attributes Low Tool; (v) Add Profile Attributes High Tool; and (vi) Add Profile Attributes Low Tool. 4. The AddAttributesFast.pyt toolbox is also used to calculate attributes for bathymetric high and low features, and has the advantage (over the AddAttributes.pyt toolbox) of having multiprocessing capabilities. This version of the add attributes toolbox contains four tools: (i) Add Shape Attributes High Tool Fast; (ii) Add Shape Attributes Low Tool Fast; (iii) Add Profile Attributes High Tool Fast; and (iv) Add Profile Attributes Low Tool Fast. The two add topographic attributes tools do not require multiprocessing capabilities to improve their performance. 5. The ClassificationFeature.pyt toolbox is used to classify bathymetric high and low features into Morphological Feature categories defined in Dove et al. (2020), and includes two tools: (i) Classify Bathymetric High Features; and (ii) Classify Bathymetric Low Features. 6. The Accessory_Tools.pyt toolbox provides four accessory tools to help the mapping processes: (i) Merge Connected Features Tool; (ii) Connect Nearby Linear Features Tool; (iii) Connect Nearby Linear HF Features Tool; and (iv) Update Feature Boundary Tool. 7. The Surface.pyt toolbox is used to map three classes of Morphological surfaces (Dove et al., 2020), and includes two tools: (i) Morphological Surface Tool Bathymetry; and (ii) Morphological Surface Tool Slope. The system and data format requirements of these ArcGIS tools are described in the tutorials and user guide that accompany the tools, which also include sampled data and step-by-step examples of their application. Further details of these tools, including their description, graphic illustrations and usages, and python code examples, are also available in their metadata. These tools have been applied to many study areas with real world applications, including those published in Huang et al. (2023) which should be used as the key reference to the GA-SaMMT. Dove, D., Nanson, R., Bjarnadóttir, L., Guinan, J., Gafeira, J., Post, A., Dolan, M.; Stewart, H.; Arosio, R, Scott, G. (October, 2020). A two-part seabed geomorphology classification scheme (v.2); Part 1: morphology features glossary. Zenodo. http://doi.org/10.5281/zenodo.4075248 Nanson, R., Arosio, R., Gafeira, J., McNeil, M., Dove, D., Bjarnadóttir, L., Dolan, M., Guinan, J., Post, A., Webb, J., & Nichol, S. (2023). A two-part seabed geomorphology classification scheme; Part 2: Geomorphology classification framework and glossary (Version 1.0) (1.0). Zenodo. https://doi.org/10.5281/zenodo.7804019 Huang, Z., Nanson, R., McNeil, M., Wenderlich, M., Gafeira, J., Post, A, Nichol, S., 2023. Rule-based semi-automated tools for mapping seabed morphology from bathymetry data, Frontiers in Marine Science, 10, 1236788.
-
<b>This record was superseded on 11/11/2022 with approval from Director, National Seabed Mapping as it has been superseded by eCat 147191</b> Seabed mapping data collected using a Kongsberg 2040C multibeam sonar system aboard research vessel MVYolla including bathymetry (2 metre resolution), backscatter (1metre resolution), watercolumn and preliminary hard bottom classification. Seabed mapping in Apollo Marine Park with 114 square kilometres of continuous seabed mapping conducted by Deakin University in partnership with iXblue for Parks Australia.
-
The source code for the AusSeabed Survey Coordination Tool. Code is located at: https://github.com/ausseabed/survey-request-and-planning-tool The AusSeabed Survey Coordination tool (ASB SCT) is a tool designed by GA and FrontierSI in collaboration with the AusSeabed Steering Committee and broader community. Its intent is to provide a location for, and consistency in specification of bathymetric data acquisition for scientific research purposes. As of March 2022, the ASB SCT supports three key functions: 1) Survey Planning: the ASB SCT allows the community to publicise their plans to survey in the Austrlian Marine Estate. The tool ingests a spatial outline of the intended location as well as the target data types and focus for the survey. The tool also collects the contact details for the chief investigator and anticipated survey dates. Once published, the survey plan is visible on the upcoming surveys spatial layer on the AusSeabed portal. 2) Hydroscheme Industry Partnership Program Requests: the ASB SCT hosts the online form for submitting survey requests to the Australian Hydrographic Office (AHO) for consideration by the HydroScheme Industry Partnership Programme. 3) Areas of Interest submission: the ASB SCT ingests submissions that describe a users seabed mapping or biodiversity characterisation data needs and location. This information is useful in identifying regions of mutual interest and boosting collaborative multi-disciplinary surveys. Understanding regions with high levels of overlapping data needs can also help inform high-value survey activities and legacy data release priorities.
-
This dataset describes the seabed morphological features of an area in the South-west Corner Marine Park. The area is within the National Park Zone and adjacent Special Purpose Zone of the Capes region of the marine park. Multibeam bathymetry data of the area was collected during March 2020 and January-February 2021 by Geoscience Australia. The seabed morphological features of the area were mapped using semi-automatic seabed morphology mapping ArcGIS python tools developed by Geoscience Australia. As the result of the mapping, this dataset contains five bathymetric high features: Bank, Cone, Hummock, Mound and Ridge, and one morphology surface feature: Plane, defined in Dove et al. (2020). Dove, D., Nanson, R., Bjarnadóttir, L., Guinan, J., Gafeira, J., Post, A., Dolan, M.; Stewart, H.; Arosio, R, Scott, G. (October, 2020). A two-part seabed geomorphology classification scheme (v.2); Part 1: morphology features glossary. Zenodo. http://doi.org/10.5281/zenodo.4075248
-
This resource contains surface sediment data for Bynoe Harbour collected by Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and Department of Land Resource Management (Northern Territory Government) during the period from 2-29 May 2016 on the RV Solander (survey SOL6432/GA4452). This project was made possible through offset funds provided by INPEX-led Ichthys LNG Project to Northern Territory Government Department of Land Resource Management, and co-investment from Geoscience Australia and Australian Institute of Marine Science. The intent of this four year (2014-2018) program is to improve knowledge of the marine environments in the Darwin and Bynoe Harbour regions by collating and collecting baseline data that enable the creation of thematic habitat maps that underpin marine resource management decisions. The specific objectives of the survey were to: 1. Obtain high resolution geophysical (bathymetry) data for outer Darwin Harbour, including Shoal Bay; 2. Characterise substrates (acoustic backscatter properties, grainsize, sediment chemistry) for outer Darwin Harbour, including Shoal Bay; and 3. Collect tidal data for the survey area. Data acquired during the survey included: multibeam sonar bathymetry and acoustic backscatter; physical samples of seabed sediments, underwater photography and video of grab sample locations and oceanographic information including tidal data and sound velocity profiles. This dataset comprises total sediment metabolism, carbonate and element concentrations and C and N isotopes measurements made on seabed sediments. A detailed account of the survey is provided in Siwabessy, P.J.W., Smit, N., Atkinson, I., Dando, N., Harries, S., Howard, F.J.F., Li, J., Nicholas W.A., Picard, K., Radke, L.C., Tran, M., Williams, D. and Whiteway, T., 2016. Bynoe Harbour Marine Survey 2017: GA4452/SOL6432 – Post-survey report. Record 2017/04. Geoscience Australia, Canberra. Thanks to the crew of the RV Solander for help with sample collection, Matt Carey, Craig Wintle and Andrew Hislop from the Observatories and Science Support at Geoscience Australia for technical support and Jodie Smith for reviewing the data. This dataset is published with the permission of the CEO, Geoscience Australia.
-
Established in 2018, AusSeabed is a collaborative national seabed mapping initiative focused on delivering freely accessible seabed mapping data and coordinating efforts to map the gaps across the Australian maritime region of responsibility. AusSeabed is driven by a cross-sector steering committee bringing together organisations from the government, academia and private sectors to ensure an inclusive and diverse representation of the seabed mapping community. This Annual Progress Report provides a detailed account of the progress made against the AusSeabed program activities planned for 2021/22. A summary of highlights can be found in the Annual Highlights Report.
-
A benthic sediment sampling survey (GA0356) to the nearshore areas of outer Darwin Harbour was undertaken in the period from 03 July to 14 September 2016. Partners involved in the survey included Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Department of Environment and Natural Resources within the Northern Territory Government (NT DENR) (formerly the Department of Land and Resource Management (DLRM)). This survey forms part of a four year (2014-2018) science program aimed at improving knowledge about the marine environments in the regions around Darwin and Bynoe Harbour’s through the collection and collation of baseline data that will enable the creation of thematic habitat maps to underpin marine resource management decisions. This project is being led by the Northern Territory Government and is supported by the INPEX-led Ichthys LNG Project, in collaboration with - and co-investment from GA and AIMS. The program builds upon an NT Government project (2011-2011) which saw the collection of baseline data (multibeam echosounder data, sediment samples and video transects) from inner Darwin Harbour (Siwabessy et al. 2015). This dataset comprises sediment oxygen demand measurements on seabed sediments. Radke, L., Smit, N., Li, J., Nicholas, T., Picard, K. 2017. Outer Darwin Harbour Shallow Water Sediment Survey 2016: GA0356 – Post-survey report. Record 2017/06. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2017.006 This research was funded by the INPEX-led Ichthys LNG Project via the Northern Territory (NT) Government Department of Land Resource Management (DLRM) (now the Department of Environment and Natural Resources (DENR)), and co-investment from Geoscience Australia (GA) and Australian Institute of Marine Science (AIMS). We are grateful to the following agencies for providing boats and staff, and to the following personal for help with sample acquisition: NT DENR (Danny Low Choy and Rachel Groome), NT Fisheries (Wayne Baldwin, Quentin Allsop, Shane Penny, Chris Errily, Sean Fitzpatrick and Mark Grubert), NT Parks and Wildlife (Ray Chatto, Stewart Weorle, and Luke McLaren) and the Larrakia Rangers (Nelson Tinoco, Kyle Lewfat, Alan Mummery and Steven Dawson). Special thanks to the skippers Danny Low Choy, Wayne Baldwin, Stewart Weorle and Luke McLaren whose seamanship strongly guided the execution of this survey. AIMS generously allowed use of the aquarium and laboratory at the Arafura Timor Sea Research Facility, and Simon Harries and Kirsty McAllister helped with the setup. We would also like to acknowledge and thank GA colleagues including: Matt Carey, Ian Atkinson and Craig Wintle (Engineering and Applied Scientific Services) for the organisation of field supplies and the design of the new core incubation set-up. This dataset is published with the permission of the CEO, Geoscience Australia
-
This OGC Web Feature Service (WFS) contains geospatial seabed morphology and geomorphology information for Flinders Reefs within the Coral Sea Marine Park and are intended for use by marine park managers, regulators, the general public and other stakeholders. This web service uses the data product published in McNeil et al. (2023); eCat Record 147998.
-
The extent to which low-frequency sound from marine seismic surveys impacts marine fauna is a subject of growing concern. The predominant frequency range of seismic airgun emissions is within the hearing range of cetaceans, reptiles, and fishes, and it can also elicit a neurological response in some invertebrates. Offshore seismic surveys have long been considered to be disruptive to fisheries, but comparatively few studies target commercially important species in realistic exposure scenarios. One of the main challenges in underwater sound impact studies is the meaningful translation of laboratory results to the field. Underwater sound properties are affected by the sound source, as well as characteristics of the water column, substrate, and biological communities. The experimental set-up is also critical in determining accurate response measurements, and design features of holding tanks can lead to misinterpretation of results, particularly related to behaviour. It may be tempting to simplify laboratory results to show effect or no effect, where results should instead be interpreted in the context of realistic exposure scenarios and field conditions. This project was developed in response to concerns raised by the fishing industry during stakeholder consultation in the lead up to a proposed seismic survey in the Gippsland Basin (Victoria, Australia), in addition to a broader need to acquire baseline data that may be used to quantify potential impacts of seismic operations on marine organisms. The project involves seven experimental components conducted before, during and after the seismic survey in both control and experimental areas of the Gippsland Basin: 1) Theoretical noise modelling, 2) Field-based noise monitoring and modelling, 3) Image acquisition by Autonomous Underwater Vehicle (AUV), 4) Bivalve sampling by dredging, 5) Fish movement analysis by tagging, 6) Catch rate analysis, and 7) Environmental modelling during the 2010 mortality event. In this presentation, we describe these components and critically review our current understanding of low-frequency sound impact on marine fish and invertebrates.
-
A benthic sediment sampling survey (GA0356) to the nearshore areas of outer Darwin Harbour was undertaken in the period from 03 July to 14 September 2016. Partners involved in the survey included Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Department of Environment and Natural Resources within the Northern Territory Government (NT DENR) (formerly the Department of Land and Resource Management (DLRM)). This survey forms part of a four year (2014-2018) science program aimed at improving knowledge about the marine environments in the regions around Darwin and Bynoe Harbour’s through the collection and collation of baseline data that will enable the creation of thematic habitat maps to underpin marine resource management decisions. This project is being led by the Northern Territory Government and is supported by the INPEX-led Ichthys LNG Project, in collaboration with - and co-investment from GA and AIMS. The program builds upon an NT Government project (2011-2011) which saw the collection of baseline data (multibeam echosounder data, sediment samples and video transects) from inner Darwin Harbour. This dataset comprises total oxygen uptake and total carbon dioxide flux measurements from core incubation experiments on seabed sediments. Radke, L., Smit, N., Li, J., Nicholas, T., Picard, K. 2017. Outer Darwin Harbour Shallow Water Sediment Survey 2016: GA0356 – Post-survey report. Record 2017/06. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2017.006 This research was funded by the INPEX-led Ichthys LNG Project via the Northern Territory (NT) Government Department of Land Resource Management (DLRM) (now the Department of Environment and Natural Resources (DENR)), and co-investment from Geoscience Australia (GA) and Australian Institute of Marine Science (AIMS). We are grateful to the following agencies for providing boats and staff, and to the following personal for help with sample acquisition: NT DENR (Danny Low Choy and Rachel Groome), NT Fisheries (Wayne Baldwin, Quentin Allsop, Shane Penny, Chris Errily, Sean Fitzpatrick and Mark Grubert), NT Parks and Wildlife (Ray Chatto, Stewart Weorle, and Luke McLaren) and the Larrakia Rangers (Nelson Tinoco, Kyle Lewfat, Alan Mummery and Steven Dawson). Special thanks to the skippers Danny Low Choy, Wayne Baldwin, Stewart Weorle and Luke McLaren whose seamanship strongly guided the execution of this survey. AIMS generously allowed use of the aquarium and laboratory at the Arafura Timor Sea Research Facility, and Simon Harries and Kirsty McAllister helped with the setup. We would also like to acknowledge and thank GA colleagues including: Matt Carey, Ian Atkinson and Craig Wintle (Engineering and Applied Scientific Services) for the organisation of field supplies and the design of the new core incubation set-up. This dataset is published with the permission of the CEO, Geoscience Australia