SHRIMP
Type of resources
Keywords
Publication year
Topics
-
<p>The Mesoproterozoic Roper Group of the McArthur Basin has excellent petroleum potential, but its poorly constrained post-depositional history has hampered resource exploration and management. The Derim Derim Dolerite occupies an important position in the regional event chronology, having intruded the Roper Group prior to deformation associated with the ‘Post-Roper Inversion’ event. It was assigned a magmatic crystallisation age of 1324 ± 4 Ma (uncertainties are 95% confidence unless otherwise indicated) in 1997, based on unpublished Sensitive High Resolution Ion Micro Probe (SHRIMP) U-Pb analyses of dolerite-hosted baddeleyite from sample 97106010, collected from the Derim Derim Dolerite type locality in outcrop within the northwestern McArthur Basin. Herein, we refine these data via Isotope Dilution-Thermal Ionisation Mass Spectrometry (ID-TIMS) analysis of baddeleyites plucked from the SHRIMP grain-mounts, which yielded a precise mean 207Pb/206Pb date of 1327.5 ± 0.6 Ma. This date is significantly older than a baddeleyite U-Pb ID-TIMS date of 1313.8 ± 1.3 Ma recently obtained from dolerite ALT-05, sampled in Pacific Oil and Gas Ltd drillhole Altree 2, near the northern margin of the Beetaloo Sub-basin, and 200 km south of 97106010. This pair of results indicates that Derim Derim Dolerite magmatism spanned at least 10-15 Ma. Previously documented geochemical variation in Mesoproterozoic mafic rocks across the Northern Territory (such as the 1325 ± 36 Ma (2σ) Galiwinku Dolerite in the northern McArthur Basin, 1316 ± 40 Ma phonolites intruding the eastern Pine Creek Orogen, and 1295 ± 14 Ma gabbro in the Tomkinson Province) may reflect episodic pulses of magmatism hitherto obscured by the low precision of the available isotopic dates. <p><b>Citation:</b> Bodorkos, S., Yang, B., Collins, A.S., Crowley, J., Denyszyn, S.W., Claoue-Long, J.C., Anderson, J.R. and Magee, C., 2020 Precise U–Pb baddeleyite dating of the Derim Derim Dolerite: evidence for episodic mafic magmatism in the greater McArthur Basin. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
This Record presents new Sensitive High Resolution Ion Micro Probe (SHRIMP) U–Pb geochronological results from the Aileron Province that were obtained during the Northern Territory Geological Survey–Geoscience Australia (NTGS–GA) geochronology project under the National Collaboration Framework (NCF) agreement, in July 2020. Geoscience Australia’s contribution to this project forms part of the Exploring for the Future (EFTF) Program, which aims to better understand the mineral, energy, and groundwater resources of Northern Australia. <b>Bibliographic Reference:</b> Kositcin N, Beyer EE and Reno BL, 2021. Summary of results. Joint NTGS–GA geochronology project: Aileron Province, Jinka and Dneiper 1:100 000 mapsheets, 2020. <i>Northern Territory Geological Survey, Record</i><b> 2021-008</b>.
-
This Record presents data collected in September 2019 as part of the ongoing Northern Territory Geological Survey–Geoscience Australia (NTGS–GA) SHRIMP geochronology project under the National Collaborative Framework (NCF) agreement and Geoscience Australia's Exploring for the Future (EFTF) Program. Two new U–Pb SHRIMP zircon geochronological results derived from two samples of the Balbirini Dolostone (southern McArthur Basin, Northern Territory) are presented herein. The Balbirini Dolostone is part of the early Mesoproterozoic Nathan Group, and is a thick unit of interbedded dolostone and dolomitic siliciclastic rocks that include evaporitic redbeds. The two samples were collected in June 2019 from the type section of the Balbirini Dolostone in southern BAUHINIA DOWNS (MALLAPUNYAH). <b>Bibliographic Reference:</b> Kositcin N, and Munson TJ, 2020. Summary of results. Joint NTGS–GA geochronology project: Balbirini Dolostone, southern McArthur Basin, June 2019–September 2019. <i>Northern Territory Geological Survey</i>, <b>Record 2020-002</b>.
-
This record presents new Sensitive High Resolution Ion MicroProbe (SHRIMP) U– Pb zircon results for eighteen samples from the Cairns, Cape York and Georgetown regions in Queensland. Samples from the Cairns region comprise one granite and one microgranite. Eight samples from the Cape York region and three from the Georgetown region comprise Paleozoic igneous rocks, all but one of which are part of the Carboniferous to Permian Kennedy Igneous Association. Of particular interest are the results for two rhyolitic intrusions from the Coen Inlier that are host to gold mineralisation and gave ages of approximately 280 Ma. These results are supported by similar ages reported by Kositcin et al. (2016), also from felsic dykes spatially associated with gold mineralisation. Together, they suggest a widespread, early-Permian gold (Kungurian) event in this region. The results for two felsic dykes spatially associated with gold mineralisation much farther to the south in the Georgetown region, also gave similar early-Permian ages. The geochronology of five metamorphic rocks from the Cape York region, which were analysed in support of the Coen–Cape Weymouth geology mapping project has resulted in all samples being reassigned to other formations. The work contained in this report was carried out under the auspices of the National Collaborative Framework (NCF) between Geoscience Australia and the Geological Survey of Queensland. The data and age interpretations are also available in Geoscience Australia’s Geochronology Delivery database (http://www.ga.gov.au/geochron-sapub-web/). <b>Bibliographic Reference: </b>CROSS, A.J., DHNARAM, C., BULTITUDE, R.J., BROWN, D.D., PURDY, D.J. & VON GNIELINSKI, F.E., 2019. Summary of results. Joint GSQ–GA geochronology project: Cairns, Cape York and Georgetown regions, 2015–2016. <i>Queensland Geological Record</i> <b>2019/01</b>.
-
New SHRIMP U-Pb zircon ages from the New England Orogen, New South Wales July 2014-June 2015
-
This Record presents data collected between March and September 2018 as part of the ongoing Northern Territory Geological Survey–Geoscience Australia (NTGS–GA) SHRIMP geochronology project under the National Collaborative Framework (NCF) agreement and Geoscience Australia's Exploring for the Future Programme. Five new U–Pb SHRIMP zircon geochronological results derived from five samples of meta-igneous and metasedimentary rocks from MOUNT RENNIE (southwestern Aileron Province and northwestern Warumpi Province) in the Northern Territory are presented herein. All five samples are located at or close to the recently discovered greenfield Grapple and Bumblebee prospects that contain precious and base metal sulfide mineralisation. This Record represents the first attempt to provide temporal constraints on the country rocks that host or occur close to this mineralisation. <b>Bibliographic Reference:</b> Kositcin N, McGloin MV, Reno BL and Beyer EE, 2019. Summary of results. Joint NTGS–GA geochronology project: Cu-Au-Ag-Zn mineralisation in MOUNT RENNIE, Aileron and Warumpi provinces, March – September 2018. <i>Northern Territory Geological Survey</i>, <b>Record 2019-011</b>.
-
Australian Proterozoic orogenic belts are typically characterised by high-temperature, low-pressure, long-lived metamorphism and near-isobaric cooling. However, this is not the case for the Nimbuwah Domain, the easternmost part of the Pine Creek Orogen and part of the oldest core of the North Australian Craton. Here we present new field relationships, geochemical, metamorphic, SHRIMP zircon and monazite U-Pb age, and zircon Lu-Hf and whole-rock Sm-Nd isotopic data for the Nimbuwah Complex and metasedimentary rocks of the Cahill Formation that they intruded in the Nimbuwah Domain. On the basis of these data we propose a new tectonic model for the Paleoproterozoic evolution of the Pine Creek Orogen. SHRIMP zircon U-Pb age data show that granitic to dioritic plutons of the Nimbuwah Complex were emplaced from 1871-1857 Ma at - 9.2 kbar and 650-C into thickened crust during D2-D3 west-directed thrusting and folding. This is termed the Nimbuwah Event. The Nimbuwah Complex was formed by partial melting of Neoarchean granites in the mid to lower crust and mixing with a juvenile magma component. The overthickened crust underwent extensional uplift to <5 kbar by 1855 Ma, constrained by monazite growth during garnet breakdown associated with syn- to late-D2 decompression. We propose that crustal thickening and magmatism occurred in response to collision of Neoarchean to Paleoproterozoic basement of the Pine Creek Orogen (the over-riding plate) with an unknown collider, now concealed beneath younger cover to the east. Exhumation of at least a 15 km crustal thickness within only a few million years indicates a short period of collisional orogenesis, consistent with the observed metamorphic evidence for a low thermal gradient during crustal thickening. Tectonic uplift and erosion of the Nimbuwah Complex fed the retro-arc Cosmo Supergroup and possibly other Paleoproterozoic successions of the North Australian Craton that are dominated by c. 1870 Ma detritus. The low thermal gradient in overthickened crust, which is unusual for Proterozoic Australia, might be a consequence of collision between relatively cool, rigid Archean blocks.
-
This Record contains new zircon U-Pb geochronological data, obtained via Sensitive High-Resolution Ion Micro Probe (SHRIMP), from two samples of metamorphosed felsic igneous rocks of the Proterozoic Pinjarra Orogen (Western Australia), intersected in diamond drillcore at the base of deep petroleum exploration wells penetrating the Paleozoic sedimentary successions of the Perth Basin. In the southern Perth Basin, petroleum exploration well Sue 1 was terminated at depth 3074.2 m, in crystalline basement rocks of the southern Pinjarra Orogen. Abundant zircon from a biotite-bearing felsic orthogneiss at depth 3073.2-3073.7 m yielded a complex array of U-Pb isotopic data, indicative of significant post-crystallisation disturbance of the isotopic system. A Discordia regression fitted to the array yielded an upper intercept date of 1076 ± 35 Ma (all quoted uncertainties are 95% confidence intervals unless specified otherwise) interpreted to represent magmatic crystallisation of the igneous precursor to the orthogneiss, and a lower intercept date of 680 ± 110 Ma which is our best estimate of the age of the tectonothermal event responsible for post-crystallisation disturbance of the U-Pb system. Crust of known Mesoproterozoic age is rare in the southern Pinjarra Orogen: pre-1000 Ma igneous crystallisation ages in the Leeuwin Complex were previously known only from two c. 1090 Ma garnet-bearing orthogneisses at Redgate Beach (Nelson, 1999), 30 km west of Sue 1. All other dated outcrops have revealed Neoproterozoic (780-680 Ma) granitic protoliths reworked by Early Cambrian (540-520 Ma) magmatism, deformation and metamorphism (Nelson, 1996, 2002; Collins, 2003). In the northern Perth Basin, petroleum exploration well Beagle Ridge 10A was terminated at depth 1482 m, in crystalline basement rocks of the northern Pinjarra Orogen. A leucocratic orthogneiss sampled within the interval 1464.0-1467.0 m yielded only sparse zircon, but four of the seven grains analysed yielded a weighted mean 207Pb/206Pb date of 1092 ± 27 Ma, interpreted to represent magmatic crystallisation of the igneous precursor to the orthogneiss. Our data show no evidence for Neoproterozoic U-Pb resetting of the c. 1090 Ma zircons: where present, post-crystallisation isotopic disturbance is predominantly geologically recent. The two newly dated samples are located at opposite ends of the Perth Basin (about 470 km apart), and although the two magmatic crystallisation ages are imprecise, the date of 1092 ± 27 Ma from the Beagle Ridge 10A leucocratic orthogneiss is indistinguishable from the date of 1076 ± 35 Ma from the Sue 1 felsic orthogneiss. Furthermore, both rocks contain inherited zircon of Mesoproterozoic age (1620-1180 Ma in Sue 1; 1290-1210 Ma in Beagle Ridge 10A), indicating the presence of pre-1100 Ma crustal components in their parent magmas. This is consistent with a suite of Paleoproterozoic Sm-Nd model ages determined by Fletcher et al. (1985) on buried Pinjarra Orogen orthogneisses, which span 2.01 ± 0.06 Ga to 1.78 ± 0.04 Ga in the north (near BMR Beagle Ridge 10A), and including a model age of 1.80 ± 0.04 Ga from a sample of granitic gneiss obtained from Sue 1. Fletcher et al. (1985) argued that the consistency of 2.1-1.8 Ga Nd model ages obtained from crystalline basement in drillcore beneath the southern and northern Perth Basin, and from outcrop in the Northampton Complex and Mullingarra Complex of the northern Pinjarra Orogen, indicated a similar or shared crustal evolution. Our new U-Pb zircon data support this model, expanding the known extent of 1100-1050 Ma felsic magmatism in both the southern and northern Pinjarra Orogen, and indicating that Neoproterozoic tectonothermal overprinting appears to be restricted to the Leeuwin Complex, with no corresponding event discernible in the northern Pinjarra Orogen.
-
This Record presents data collected in March 2021 as part of the ongoing Northern Territory Geological Survey–Geoscience Australia (NTGS–GA) SHRIMP geochronology project under the National Collaborative Framework (NCF) agreement and Geoscience Australia's Exploring for the Future Program. New U–Pb SHRIMP zircon geochronological results derived from two drillhole samples of igneous and meta-igneous material from basement to the Amadeus Basin in the Northern Territory are presented herein. <b>Bibliographic Reference:</b> Kositcin N, Verdel C and Edgoose CJ, 2022. Summary of results. Joint NTGS–GA geochronology project: Crystalline basement intersected by the Mount Kitty 1 and Magee 1 drillholes south of Alice Springs, March 2021. <i>Northern Territory Geological Survey</i>, <b>Record 2022-002</b>.
-
This Record presents new zircon U-Pb geochronological data, obtained using a Sensitive High Resolution Ion MicroProbe (SHRIMP) for five samples of plutonic and volcanic rocks from the central Lachlan Orogen and the Thomson Orogen, New South Wales. The work was carried out under the auspices of the National Geoscience Accord, as a component of the collaborative Geochronology Project between the Geological Survey of New South Wales (GSNSW) and Geoscience Australia (GA) during the reporting periods 2011-2012.