From 1 - 10 / 139
  • Conference volume and CD are available through the Petroleum Exploration Society of Australia

  • D/H ratios of terrestrially-sourced whole oils and their respective saturated, aromatic, and polar fractions, individual n-alkanes, formation waters and non-exchangeable hydrogen in kerogen were measured from source rocks from seven Australian petroleum basins. Data for 75 oils and condensates, their sub-fractions, and 52 kerogens indicate that oil sub-fractions have deltaD values comparable to deltaDoil, with a deltadeltaD offset (deltaDkerogen - deltaDoil) averaging ca. 23?. The weighted-average deltaD of individual n-alkanes is usually identical to deltaDoil and deltaDsaturate. A trend of increasing deltaD with n-alkane chain length in most oils causes individual n-alkanes from an oil to vary in deltaD by 30? or more. A modest correlation between deltaD for aromatic sub-fractions and formation waters indicates that about 50% of aromatic C-bound H has exchanged with water. In contrast, deltaDoil and deltaDsaturated show no evidence for H-exchange with formation water under reservoir conditions at temperatures up to 150 oC. Acyclic isoprenoids and n-alkanes show essentially indistinguishable deltaD, indicating that primary isotopic differences from biosynthesis have been erased. Overall, extensive exchange of C-bound H in petroleum with other hydrogen is apparent, but seems to have affected most hydrocarbons only during their chemical genesis from precursor molecules. Our isotopic findings from terrestrial-sourced oils should be qualitatively relevant for marine oils as well.

  • The extreme variation in the natural endowment of petroleum resources between regions has been a key geo-political driver in the last century and may well remain so in the decades ahead. Most of the world?s oil is located in a latitudinal belt lying predominantly north of the equator, running from the Gulf of Mexico and Venezuela, to North Africa, through the Middle East, the Caspian and Central Asia and down to Indonesia. Klemme and Ulmishek (1991) calculated that this Tethyan Petroleum Province contained 68% of global original petroleum reserves. Its vast petroleum resources were derived largely from the organic rich marine rocks deposited in low latitude in restricted basins and on shallow carbonate shelves flanking the various Palaeozoic, Mesozoic and Cainozoic incarnations of the east-west orientated Tethys Ocean.

  • 2002 and 2003 may well prove to be pivotal years for petroleum exploration in Australia as we endeavour to meet our twin imperatives of finding more oil and using gas. Long term gas supply contracts have been signed with China and a number of key oil discoveries have been made both on and offshore. Deep water wells will be drilled that have the potential to usher in another phase of major oil discovery akin to bonanza of the 1960s, when the first steps into the offshore resulted in billion barrel discoveries in Bass Strait. By the close of the first successful cycle of exploration in Australia (1960 to 1972) all currently producing basins were identified as petroliferous, the major play types had been established and over 60% of Australia?s current oil reserves found. The key drivers of this phase were the access to new basins opened up by the move to offshore exploration and the stimulus to further exploration provided by discovery success. The same drivers are apparent now. Recent discoveries in the Perth, Carnarvon, Otway and Browse basins provide strong indications that a significant new cycle of exploration success is already underway. In many cases these finds represent the largest fields yet found in the basin or at least the largest in the last thirty years. The usual discovery history trend of declining field sizes over time has been turned on its head - clearly demonstrating that many of Australia?s currently producing basins still have a long way to run and encouraging further exploration efforts. Perhaps of even more importance to Australia?s long term liquids self sufficiency is the current deepwater drilling campaign which is stepping out beyond former geographic limits. The first wells in major Mesozoic depocentres on the outer margin of the North west Shelf and in the Great Australian Bight are being drilled with the potential to establish entirely new petroleum provinces.

  • This map contains information on Oil and Gas pipeline infrastructure. Attributes have been added to comply with data standards and minor coding of line work has been achieved using annotation from the map. Further data has been added, specifically for the specific Acreage Release Areas.

  • "An audit of petroleum exploration wells in the Bass Basin, 1966-1999" provides reasons for the success and failure of previous exploration drilling in the Bass Basin. It highlights the risks and uncertainties of exploration drilling and offers insights into prospectivity for future exploration. The CD-ROM provides information on structure, petroleum systems elements, maturity, hydrocarbon shows, and an assessment of the validity of each of the 32 wells in the Bass Basin. It also contains images of seismic ties and composite logs for each well.

  • Sandstone deposits are important sources of uranium, accounting for approximately 20 percent of global production, largely through in situ leach (ISL) mining. Most of this production has come from deposits in the western US, Niger and Kazakhstan. In Australia, sandstone-hosted uranium is being produced from the Beverley deposit in the Frome Embayment of South Australia, and a second ISL mine is under development at Honeymoon in the same region. Such deposits form where uranium-bearing oxidised ground waters moving through sandstone aquifers react with reducing materials. The locations of ore zones and the sizes of mineral deposits depend, amongst other factors, on the abundance and the reactive nature of the reductant. Hence the nature and abundance of organic material in the ore-bearing sedimentary sequence may be of critical importance in the formation of sandstone uranium deposits. In sandstones rich in organic material (containing debris of fossil plants or layers of authigenic organic material) the organic materials either reduce uranium directly with bacteria as a catalyst, or result in production of biogenic H2S. In sandstones relatively poor in organic material, that the reduction can be caused either by the introduction of hydrocarbons and/or H2S from oil/gas fields within underlying sediments; or by H2S produced from the interaction of oxidised ground water with pyrite in the sandstone aquifer. This paper outlines the geology of the world-class sandstone uranium deposits in the Chu-Sarysu and Syr-Darya Basins in the south-central portion of Kazakhstan, which are hosted by sandstones relatively poor in organic matter. It highlights the crucial role of that hydrocarbons appear to have played in the formation of these and other large sandstone type uranium deposits. Based on the model developed, it is concluded that there is considerable potential in Australia for discovery of large sandstone hosted uranium mineralisation, including in little explored regions underlain by basins with known or potential hydrocarbons.

  • Presentation delivered on 8 March 2012 at the Tasman Frontier Petroleum Industry Workshop, Geoscience Australia, Canberra.

  • The map and supporting booklet (the key) are based on information held by the State and Territory Departments of Mines and the Commonwealth Department of Industry, Science and Resources. The map is published annually at a scale of 1:5 000 000 and supports the Commonwealth Government's offshore petroleum exploration area release program. The map includes all available information up to May 2003. The key (booklet) accompanying the map lists the relevant title numbers, the title holders, areas of the titles and expiry dates, by State and Territory. Also included is information on petroleum exploration permits, licences, leases and production licences in offshore areas under the jurisdiction of the relevant State and Territory petroleum acts, and offshore areas under the Commonwealth Petroleum (Submerged Lands) Act.

  • This product contains basic data drawn from Geoscience Australia's in-house databases. The data relates to the Bass and Durroon Basins, and provides information on bathymetry, gravity, magnetics, biostratigraphy, porosity and permeability, geochemistry, velocity and hydrocarbon shows.