From 1 - 10 / 34
  • The Bunbury 2008 LiDAR data was captured over the Bunbury region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.

  • An audit of high resolution elevation data capture in relation to densely populated areas was completed to: provide an overview of the status of high resolution elevation data acquisition around the coastal zone; and highlight areas for potential acquisition or further processing based on priorities identified through consultation with Commonwealth and State jurisdictions.

  • The Peel 2008 LiDAR data was captured over the Peel region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.

  • Map is an image of the seafloor and land topograhpy with the seafloor data between latitudes 64 degrees North and 72 degrees South by Smith and Sandwell (1997) with more information from W.H.F Smith and D.T. Sandwell, Global Seafloor Topography from Satellite Altimetry and Ship Depth Soundings, Science, v.277, p. 1956-1962, 26 September 1997. This has been combined with land topography from the Global Land One-km Base Elevation (GLOBE) Project. This image has been modified in ER Mapper to increase the depth perception by chaning the sun angle.

  • The Busselton 2008 LiDAR data was captured over the Busselton region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.

  • The Perth 2008 LiDAR data was captured over the Perth region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.

  • This report describes products, outputs and outcomes of the three-dimensional (3D) visualisation component of the Great Artesian Basin Water Resource Assessment (the Assessment). This report specifically encompasses the following topics associated with the 3D visualisation component: - the requirements and potential benefits - the effective datasets - methodology used in content creation - the output datasets - discussions regarding outcomes, limitations and future directions. The Assessment is designed to assist water managers in the Great Artesian Basin (GAB) to meet National Water Initiative commitments. The key datasets of the 3D visualisation component include contact surfaces between major aquifers and aquitards with coverage of significant portions of the GAB, well lithostratigraphic and wire-line data and hydrogeochemistry produced by State and National Agencies. These datasets are manipulated within GOCAD® to develop the 3D visualisation component and communication products for use by end users to assist visualisation and conceptualisation of the GAB. While many options have been investigated for distribution of these 3D products, 2D screen captures and content delivery via the Geoscience Australia (GA) World Wind 3D data viewer will be the most efficient and effective products. Citation: Nelson GJ, Carey H, Radke BM and Ransley TR (2012) The three-dimensional visualisation of the Great Artesian Basin. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia

  • Elevation data and products such as Digital Elevation Models derived from these data comprise an essential layer within the National Spatial Data Infrastructure. Historically the creation of these datasets has been the domain of National and State mapping agencies. However, in recent years the rapid development of survey technologies and industry capability, the need for high resolution elevation data to meet a range of purposes, and the nature of government funding arrangements has resulted in significant project-based investment.

  • The Australian tidal error model is the first attempt to define uncertainties in Mean Sea Level (MSL) around the Australian coastline between tide gauges. Tide gauge observations for the Australian coast span from less than 1 month to greater than 100yrs of observations. The high quality, decade and longer observation tide gauges are used in the production of the frequency dependant error surface. The observed hourly data are analysed using the National Tidal Centre TANS analysis package, resulting in harmonic constituents (used for prediction), a MSL determination, a fitted linear trend and a residual. The power spectrum of the residual is then separated into a predefined set of frequency bins, representing the noise levels of the sea surface proportional to frequency. The longer span observations fill more of this predefined spectrum, specifically the lower frequency errors, which contribute a significant proportion of error. Spatial interpolation around Australia is performed individually for each frequency bin. Using this method allow regions with shorter span observations to have lower frequency error added, creating a synthetic spectrum at the interpolation point. The synthetic spectrums are then used to determine confidence intervals of MSL around the coastline of Australia. The understanding of these errors is an important step for combining bathymetry and topography datasets ultimately creating a seamless national digital elevation model.

  • The 2009 National Elevation Audit is a series of maps illustrating the areas where elevation data has been captured or will be completed until the end of 2009 and their relative vertical accuracy.