Authors / CoAuthors
Abstract
SRTM Documentation (best viewed with mono-spaced font, such as courier) 1.0 Introduction The SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Imagery and Mapping Agency (NIMA), as well as the participation of the German and Italian space agencies, to generate a near-global digital elevation model (DEM) of the Earth using radar interferometry. The SRTM instrument consisted of the Spaceborne Imaging Radar-C (SIR-C) hardware set modified with a Space Station-derived mast and additional antennae to form an interferometer with a 60 meter long baseline. A description of the SRTM mission, can be found in Farr and Kobrick (2000). Synthetic aperture radars are side-looking instruments and acquire data along continuous swaths. The SRTM swaths extended from about 30 degrees off-nadir to about 58 degrees off-nadir from an altitude of 233 km, and thus were about 225 km wide. During the data flight the instrument was operated at all times the orbiter was over land and about 1000 individual swaths were acquired over the ten days of mapping operations. Length of the acquired swaths range from a few hundred to several thousand km. Each individual data acquisition is referred to as a "data take." SRTM was the primary (and pretty much only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days. Following several hours for instrument deployment, activation and checkout, systematic interferometric data were collected for 222.4 consecutive hours. The instrument operated virtually flawlessly and imaged 99.96% of the targeted landmass at least one time, 94.59% at least twice and about 50% at least three or more times. The goal was to image each terrain segment at least twice from different angles (on ascending, or north-going, and descending orbit passes) to fill in areas shadowed from the radar beam by terrain. This 'targeted landmass' consisted of all land between 56 degrees south and 60 degrees north latitude, which comprises almost exactly 80% of the total landmass.
Product Type
dataset
eCat Id
61844
Contact for the resource
Custodian
Point of contact
Cnr Jerrabomberra Ave and Hindmarsh Dr GPO Box 378
Canberra
ACT
2601
Australia
Keywords
-
- DEM topographic
- ( Theme )
-
- DEM
- ( Theme )
-
- digital elevation data
-
- AU
- Australian and New Zealand Standard Research Classification (ANZSRC)
-
- Topology
-
- Published_Internal
Publication Date
2004-01-01T00:00:00
Creation Date
Security Constraints
Legal Constraints
Special, MOU, etc.
Access - restricted
Use - license
Status
Purpose
Maintenance Information
notPlanned
Topic Category
elevation
Series Information
Lineage
1.0 Introduction The SRTM data sets result from a collaborative effort by the National Aeronautics and Space Administration (NASA) and the National Imagery and Mapping Agency (NIMA), as well as the participation of the German and Italian space agencies, to generate a near-global digital elevation model (DEM) of the Earth using radar interferometry. The SRTM instrument consisted of the Spaceborne Imaging Radar-C (SIR-C) hardware set modified with a Space Station-derived mast and additional antennae to form an interferometer with a 60 meter long baseline. A description of the SRTM mission, can be found in Farr and Kobrick (2000). Synthetic aperture radars are side-looking instruments and acquire data along continuous swaths. The SRTM swaths extended from about 30 degrees off-nadir to about 58 degrees off-nadir from an altitude of 233 km, and thus were about 225 km wide. During the data flight the instrument was operated at all times the orbiter was over land and about 1000 individual swaths were acquired over the ten days of mapping operations. Length of the acquired swaths range from a few hundred to several thousand km. Each individual data acquisition is referred to as a "data take." SRTM was the primary (and pretty much only) payload on the STS-99 mission of the Space Shuttle Endeavour, which launched February 11, 2000 and flew for 11 days. Following several hours for instrument deployment, activation and checkout, systematic interferometric data were collected for 222.4 consecutive hours. The instrument operated virtually flawlessly and imaged 99.96% of the targeted landmass at least one time, 94.59% at least twice and about 50% at least three or more times. The goal was to image each terrain segment at least twice from different angles (on ascending, or north-going, and descending orbit passes) to fill in areas shadowed from the radar beam by terrain. This 'targeted landmass' consisted of all land between 56 degrees south and 60 degrees north latitude, which comprises almost exactly 80% of the total landmass. 2.0 Data Set Characteristics 2.1 General SRTM data were processed in a systematic fashion using the SRTM Ground Data Processing System (GDPS) supercomputer system at the Jet Propulsion Laboratory. Data were mosaicked into approximately 15,000 one degree by one degree cells and formatted according to the Digital Terrain Elevation Data (DTED) specification for delivery to NIMA, who will use it to update and extend their DTED products. Data were processed on a continent-by-continent basis beginning with North America. NIMA is applying several post-processing steps to these data including editing, spike and well removal, water body leveling and coastline definition. Following these "finishing" steps data will be returned to NASA for distribution to the scientific and civil user communities, as well as the public. In advance of that, the unedited data are being released for public use subject to the caveats discussed below.
Parent Information
Extents
[-44.0, -10.0, 112.0, 156.0]
Reference System
Spatial Resolution
Service Information
Associations
Downloads and Links
Source Information
Source data not available.