From 1 - 10 / 20
  • Carnarvon Shelf reef polygons were manually digitized from multibeam echosounder datasets collected on marine survey GA0308 in August/September 2008. Reef areas were defined as exposed, hard substrate that are often raised above the surrounding seafloor. They were mapped using bathymetry and backscatter data along with bathymetric derivatives including; slope, hillshaded bathymetry and contours. Features were mapped at a scale of 1:10 000. This dataset is published with the permission of the CEO, Geoscience Australia.

  • AusAEM 02 Airborne Electromagnetic Survey, NT /WA, 2019-2020: TEMPEST® AEM data and conductivity estimates The accompanying data package, titled “AusAEM 02 WA/NT, 2019-20 Airborne Electromagnetic Survey: TEMPEST® airborne electromagnetic data and conductivity estimates”, was released on 10 August 2020 by Geoscience Australia (GA), the Geological Survey of Western Australia and the Northern Territory Geological Survey. The package contains processed data from the“AusAEM 02 WA/NT, 2019-20 Airborne Electromagnetic Survey" that was flown over the North-West part of the Northern Territory across the border and all the way to the coast into Western Australia. The regional survey was flown at a 20-kilometre nominal line spacing and entailed approximately 55,675 line kilometres of geophysical data. The survey was flown in two tranches during 2019, by CGG Aviation (Australia) Pty. Ltd. under contract to Geoscience Australia, using the TEMPEST® airborne electromagnetic system. CGG also processed the data. The survey also includes a further 6,450 line kilometres of infill flying that was funded by private exploration companies, acquired in certain blocks within the survey area. The data from these infill blocks have been processed in the same manner as the regional lines and are part of this release. Geoscience Australia commissioned the AusAEM 02 survey as part of the Exploring for the Future (EFTF) program, flown over parts of the Northern Territory and Western Australia. Geoscience Australia (GA) leads the EFTF program, in collaboration with the State and Territory Geological Surveys of Australia. The program is designed to investigate the potential mineral, energy and groundwater resources of Australia driving the next generation of resource discoveries. GA managed the survey data acquisition, processing, contract, the quality control of the survey and generating two of the three inversion products included in the data package. The data release package comntains 1. A data release package summary PDF document. 2. The survey logistics and processing report and TEMPEST® system specification files 3. ESRI shape files for the regional and infill flight lines 4. Final processed point located line data in ASEG-GDF2 format 5. Conductivity estimates generated by CGG’s EMFlow conductivty-depth transform -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -Grids generated from CGG's inversion conductivty-depth transform in ER Mapper® format (layer conductivities) 6. Conductivity estimates generated by Geoscience Australia's inversion -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS) -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)

  • <p>Geoscience Australia (GA) generated a series of gravity and magnetic grids and enhancements covering Northern Australia. Several derivative gravity datasets have been generated 1) for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E), 2) for the Northern Territory (approximately between latitudes 7‒26⁰ S and longitudes 125.5‒141⁰ E) and for Queensland (approximately between latitudes 7‒30⁰ S and longitudes 135‒160⁰ E). The magnetic dataset has been generated only for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E). The magnetic and gravity data were downloaded from the Geophysical Archive Data Delivery System (GADDS), website (http://www.geoscience.gov.au/cgi-bin/mapserv?map=/nas/web/ops/prod/apps/mapserver/gadds/wms_map/gadds.map&mode=browse). Satellite Free-air (FA) gravity v27.1 (released March 11, 2019) and Satellite Topography v19.1 (released January 14, 2019) data were sourced from Sandwell et al. (2014) and downloaded from the Scripps Institution of Oceanography (SIO), National Oceanic and Atmospheric Administration (NOAA), U.S. Navy and National Geospatial-Intelligence Agency (NGA) (SIO Satellite Geodesy, website, http://topex.ucsd.edu/WWW_html/mar_grav.html). The Satellite Bouguer gravity grid with onshore correction density of 2.67 gcm-3 and offshore correction density of 2.20 gcm-3 was derived from the Free-air gravity v27.1 and Topography data V19.1. This Bouguer gravity grid was used for filling areas of data gaps in the offshore region. <p>Data evaluation and processing of gravity and magnetic data available in the area of interest resulted in the production of stitched onshore-offshore Bouguer gravity grid derived from offshore satellite Bouguer gravity grid and GA’s onshore ground and airborne gravity survey data and a stitched Total Magnetic Intensity (TMI) grid derived from airborne and shipborne surveys (Tables 1 and 5). A Reduction to the Pole (RTP) grid was derived from the stitched TMI grid. The TMI, RTP, FA and terrain corrected Bouguer gravity anomalies are standard datasets for geological analysis. The free-air gravity anomaly provides the raw and basic gravity information. Images of free-air gravity are useful for first-pass interpretation and the data is used for gravity modelling. Magnetic anomalies provide information on numerous magnetic sources, including deep sources as arising from the structure and composition of magnetic basement and shallow sources such as intra-sedimentary magnetic units (e.g. volcanics, intrusions, and magnetic sedimentary layers). A standard TMI image will contain information from all these sources. Geosoft Oasis montaj software was used throughout the data processing and enhancement procedure and the montaj GridKnit module was used to generate the stitched gravity and magnetic grids. <p>Enhancement techniques have been applied to the final processed Bouguer gravity and RTP magnetic grids to highlight subtle features from various sources and to separate anomalies from different source depths. These enhancement techniques are described in the next section. <p>Enhancement processing techniques and results <p>A summary of image processing techniques used to achieve various outcomes is described in Table 1. <p>Data type Filter applied Enhancement/outcome <p>Gravity/Magnetic First vertical derivative (1VD) Near surface features (e.g. intrabasinal) <p>Gravity/Magnetic Upward continuation Noise reduction in data <p>Gravity/Magnetic Low pass filter, or large distance upward continuation Enhancement of deep features (e.g. basement) <p>Gravity/Magnetic High pass filter Enhancement of shallow features (e.g. surface anomalies) <p>Gravity/Magnetic Tilt filter and 1VD Enhancement of structure (e.g. in basement) <p>Gravity/Magnetic ZS-Edgezone and ZS-Edge filters Enhancement of edges <p>Gravity/Magnetic horizontal modulus / horizontal gradient Enhancement of boundaries <p>Magnetic RTP (reduction to the pole), Compound Anomaly, and Analytic Signal filter Accurate location of sources

  • Browse Shelf reef polygons were manually digitized from multibeam echosounder datasets collected on marine survey GA0345/GA0346/TAN1411 in October/November 2014. Reef areas were defined as exposed, hard substrate that are often raised above the surrounding seafloor. The continental shelf was defined using the 200 m depth contour. They were mapped using bathymetry and backscatter data along with bathymetric derivatives including; slope, hillshaded bathymetry and contours. Features were mapped at a scale of 1:10 000. This dataset is published with the permission of the CEO, Geoscience Australia.

  • Interpretation of newly acquired seismic data in the northern Houtman Sub-basin (Perth Basin) suggests the region contains potential source rocks similar to those in the producing Abrolhos Sub-basin. The regionally extensive late Permian–Early Triassic Kockatea Shale has the potential to contain the oil-prone Hovea Member source interval. Large Permian syn-rift half-graben, up to 10 km thick, are likely to contain a range of gas prone source rocks. Further potential source rocks may be found in the Jurassic-Early Cretaceous succession, including the Cattamarra Coal Measures, Cadda shales and mixed sources within the Yarragadee Formation. This study investigates the possible maturity and charge history of these different source rocks. A regional pseudo-3D petroleum systems model is constructed using new seismic interpretations. Heat flow is modelled using crustal structure and possible basement composition determined from potential field modelling, and subsidence analysis is used to investigate lithospheric extension through time. The model is calibrated using temperature and maturity data from 9 wells in the Houtman and Abrolhos sub-basins. Source rock properties are assigned based on an extensive review of TOC, Rock Eval and kinetic data for the offshore northern Perth Basin. Petroleum systems analysis results show that Permian, Triassic and Early Jurassic source rocks may have generated large cumulative volumes of hydrocarbons across the northern Houtman Sub-basin, whilst Middle Jurassic‒Cretaceous sources remain largely immature. However the timing of hydrocarbon generation and expulsion with respect to trap formation and structural reactivation is critical for the successful development and preservation of hydrocarbon accumulations.

  • Vlaming Shelf reef polygons were manually digitized from multibeam echosounder datasets collected on marine survey GA0334 in March/April 2012. Reef areas were defined as exposed, hard substrate that are often raised above the surrounding seafloor. They were mapped using bathymetry and backscatter data along with bathymetric derivatives including; slope, hillshaded bathymetry and contours. Features were mapped at a scale of 1:10 000. This dataset is published with the permission of the CEO, Geoscience Australia.

  • The product consists of 5,291 line kilometres of time-domain airborne electromagnetic (AEM) geophysical data acquired in the Fitzroy River Catchment of the West Kimberley region, the electrical conductivity models derived from the dataset, and the survey operations and processing report. The data were acquired using the heliborne SkyTEM-312 AEM system. A locality diagram for the survey is shown below. The survey was funded by the Government of Western Australia, as part of its Water for Food Initiative, through the Department of Water (WA DoW). The survey was managed by Geoscience Australia as part of a national collaborative framework project agreement with WA DoW. The aim of the survey was to map the electrical properties of the top 200-300 metres of the sub-surface geology and hydrogeology within the study area. Geoscience Australia contracted SkyTEM Australia Pty Ltd to acquire the AEM data using the SkyTEM-312 system in September and October 2015. The data were also processed by SkyTEM Australia Pty Ltd using its in-house processing and inversion techniques. The Kimberley Region in north-west Australia is a priority area for the development of irrigated agriculture. The hydrogeology of the area is poorly understood, hence the primary aim of the AEM survey was to provide geophysical data in support of groundwater investigations. Specific objectives of the AEM survey included mapping the extent of regional Canning Basin aquifers to aid assessment of groundwater resources and sustainable yield estimates for agricultural development; provide AEM data in transects to underpin studies of surface-groundwater interactions (groundwater discharge and recharge potential) associated with the major rivers, and permanent river pools in particular; detect and assess potential groundwater salinity hazards within proposed irrigation areas; and map the seawater intrusion (SWI) interface. Very specific mapping objectives were developed for each sub-area, and the survey was designed with these detailed local objectives in mind. The survey design reflects two scales of investigation: 1. Two areas (Knowsley-Mowanjum and GoGo-Fitzroy Crossing) with higher density flight line spacing (400 m) in areas with advanced plans for development of irrigated agriculture; 2. Irregular grid of regional transects and lines acquired along river tracts reflecting the reconnaissance nature of regional investigations in a frontier hydrogeological area. Much of the area lies underneath cover of sedimentary basins and is a poorly-understood element of Australia¿s geology. The Fitzroy Trough is also host to a number of mineral systems including diamonds and base metal mineralisation, as well as shale gas resources. The survey data should assist with understanding of the basin geology and neotectonics, while lamproite pipes have also been intersected in a number of flight lines. The survey data will also add to the knowledge of the thickness and character of alluvium and regolith cover and will inform future geological mapping in the region. The data will be available from Geoscience Australia¿s web site free of charge. The data release package includes: 1. Point-located electromagnetic line data with associated position, height, orientation, transmitter current, and derived ground elevation data. These data are in ASCII column format with associated ASEG-GDF2 header files. All regular survey, repeat lines and high altitude lines are included in the dataset. The dataset is split into Parts 1 and 2 based on the differences in the receiver gate times for each part. 2. Point-located magnetic line data with associated position, height, orientation, and derived ground elevation data. These data are in ASCII column format with associated ASEG-GDF2 header files. All regular survey, repeat lines and high altitude lines are included in the dataset. 3. Point-located line data for conductivity estimates derived by SkyTEM Australia Pty Ltd using its Automated Laterally Constrained Inversion (aLCI) algorithm with associated position, height, orientation, and derived ground elevation data. Data include the conductivity estimate for each of the 30 inversion model layers, the layer elevation, estimated depth of investigation, and data fit residuals. These data are in ASCII column format with associated ASEG-GDF2 header files. All regular survey and repeat lines are included in the dataset. 4. Gridded data for the derived ground elevations, total magnetic intensity, and the conductivity of the 30 aLCI inversion model layers. The grids are in ER Mapper® binary raster grid format with associated header files. The grids have a cell size of 100 m. For the aLCI inversion layer conductivity grids, there are versions that are masked (set to undefined) below the estimated depth of investigation and unmasked. 5. Graphical multiplots and spatial images derived from the aLCI inversion. The multiplots show the derived aLCI conductivity depth sections and selected data panels for each individual flight line in Portable Network Graphics (PNG) and Portable Document Format (PDF) formats. The spatial images show colour images of the conductivity for each aLCI model layer and are in PNG, PDF and geo-located Tagged Image Format (TIF) files suitable for use in MAPINFO. 6. The survey Operations and Processing Report, which provides the details of the AEM system, logistics, data acquisition, data processing and the aLCI inversion parameters. 7. ESRI shapefiles and KML files of flight lines. Summary Survey Name West Kimberley Airborne EM Survey, WA, 2015 (Water for Food) State Western Australia Sub Region West Kimberley Area 20,314 km2 Line km 5,291 km Survey Completed 17 October 2015 AEM system SkyTEM-312 Processing SkyTEM Australia Pty Ltd

  • <div>This dataset represents the second version of a compilation of borehole stratigraphic unit data on a national scale (Figure 1). It builds on the previous Australian Borehole Stratigraphic Units Compilation (ABSUC) Version 1.0 (Vizy &amp; Rollet, 2023a) with additional new or updated stratigraphic interpretation on key boreholes located in Figure 2. Its purpose is to consolidate and standardise publicly accessible information from boreholes, including those related to petroleum, stratigraphy, minerals, and water. This compilation encompasses data from states and territories, as well as less readily available borehole logs and interpretations of stratigraphy.</div><div>&nbsp;</div><div>This study was conducted as part of the National Groundwater Systems (NGS) Project within the Australian Government's Exploring for the Future (EFTF) program. Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div>&nbsp;</div><div>As our understanding of Australian groundwater systems expands across states and territories, including legacy data from the 1970s and recent studies, it becomes evident that there is significant geological complexity and spatial variability in stratigraphic and hydrostratigraphic units nationwide. Recognising this complexity, there is a need to standardise diverse datasets, including borehole location and elevation, as well as variations in depth and nomenclature of stratigraphic picks. This standardisation aims to create a consistent, continent-wide stratigraphic framework for better understanding groundwater system for effective long-term water resource management and integrated resource assessments.</div><div>&nbsp;</div><div>This continental-scale compilation consolidates borehole data from 53 sources, refining 1,117,693 formation picks to 1,010,483 unique records from 171,396 boreholes across Australia. It provides a consistent framework for interpreting various datasets, enhancing 3D aquifer geometry and connectivity. Each data source's reliability is weighted, prioritising the most confident interpretations. Geological units conform to the Australian Stratigraphic Units Database (ASUD) for efficient updates. Regular updates are necessary to accommodate evolving information. Borehole surveys and dip measurements are excluded. As a result, stratigraphic picks are not adjusted for deviation, potentially impacting true vertical depth in deviated boreholes.</div><div>&nbsp;</div><div>This dataset provides:</div><div>ABSUC_v2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Australian stratigraphic unit compilation dataset (ABSUC)</div><div>ABSUC_v2_TOP&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of preferred top picks from the ABSUC_v2 dataset</div><div>ABSUC_v2_BASE&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of preferred base picks from the ABSUC_v2 dataset</div><div>ABSUC_BOREHOLE_v2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ABSUC Borehole collar dataset</div><div>ASUD_2023&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of the Australia Stratigraphic Units Database (ASUD)</div><div>&nbsp;</div><div>Utilising this uniform compilation of stratigraphic units, enhancements have been made to the geological and hydrogeological surfaces of the Great Artesian Basin, Lake Eyre Basin and Centralian Superbasin. This compilation is instrumental in mapping various regional groundwater systems and other resources throughout the continent. Furthermore, it offers a standardised approach to mapping regional geology, providing a consistent foundation for comprehensive resource impact assessments.</div>

  • CGG Aviation (now Xcalibur Multiphysics) collected airborne gravity data in the Kidson area covering parts of the Gibson and Great Sandy Deserts in central Western Australia as part of a collaborative project between Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA). The aim of the project was to collect airborne gravity gradiometry data in the region at 2500 m wavelength resolution to help characterise key undercover geological elements of the region. The survey consisted of a Main block and an Extension block. Data were acquired from North/South flight lines (Main block) and East-West flight lines (Extension block) with an average target ground clearance of 120m. Tie lines at 25,000m line spacing were flown only for the Main block. A total of 78,700 line kilometres of data were collected during the survey. <b>Survey details</b> Survey Name: Kidson WA airborne gravity gradiometer survey 2017 State/Territory: Western Australia Datasets Acquired: Airborne gravity gradiometer Geoscience Australia Project Number: Acquisition Start Date: July 21, 2017 Acquisition End Date: May 3, 2018 Number of blocks: 2 Flight line spacing: 2,500m Flight line direction: Area 1 - 180 deg/ NS; Area 2 - 270 deg/EW Tie line spacing: 25,000m Tie line direction: Area 1 only - 270 deg / EW Total distance flown: 78,700 line kilometres Nominal terrain clearance (above ground level): 120m Clearance method: Drape Aircraft type: 2 aircrafts with different Falcon AGG system installed - Cessna Grand Caravan 208B / Full spectrum Falcon system Kepler/Newton Data Acquisition: CGG Aviation Australia Pty Ltd Project Management: Geoscience Australia Quality Control: Dr Mark Dransfield contracted by Geoscience Australia Dataset Ownership: Western Australia and Geoscience Australia <b>Files included in this download</b> The original agreement with CGG Aviation Australia Pty Ltd (CGG) stated that gradient point located data was available for purchase on non-exclusive terms from CGG until 30 June 2027, after which date the gradient data would be made public. In July 2021, the terms of the agreement changed after Xcalibur Multiphysics acquired CGG Aviation Pty Ltd. Xcalibur authorised the release of the gradient data. A new final dataset and report was generated by Xcalibur and delivered to Geoscience Australia. This data release contains the gradient point located data. <b>1. Point-located Data / line data</b> ASEG-GDF2 and Geosoft GDB format with accompanying description and definition files. The sample frequency is 8Hz. <b>2. Grids</b> Datum: GDA2020 Projection: MGA 51 Grid cell size: 500m Formats: Geosoft GRD and ERMapper (.ers) with accompanying description files. <b>3. Reports</b> • Final survey logistic report delivered to Geoscience Australia by the survey contractor. • Kidson QC report from Dr Mark Dransfield The data from this Kidson airborne gravity gradiometry survey has been released and can be downloaded from the Geological Survey of Western Australia’s MAGIX platform at https://magix.dmirs.wa.gov.au and GeoVIEW.WA web mapping application at https://geoview.dmp.wa.gov.au/GeoView under reference number 71234.

  • <div>An airborne gravity survey was conducted over the North East Canning area in the Kimberley region of Western Australia as a part of the Tanami-NE Canning Western Australia Airborne Gravity Survey 2017. The survey was part of a collaborative research project between Geoscience Australia (GA) and the Geological Survey of Western Australia. Gravity data was collected at 5 km wavelength resolution with the purpose to help characterise key undercover geological elements of the region. The survey was conducted by Thomson Aviation Pty Ltd with a GT-2A gravimeter and managed by Geoscience Australia. A total of 23,953.65 line km of data were acquired over an area of 53,346 km².</div><div><strong>Survey details</strong></div><div>Survey Name: Tanami North East Canning Airborne gravity survey</div><div>State/Territory: Western Australia (WA)</div><div>Datasets Acquired: Airborne gravity</div><div> Geoscience Australia Project Number: P1291A</div><div> Acquisition Start Date: 17 August 2017</div><div> Acquisition End Date: 15 November 2017</div><div> Flight line spacing: 2.5 km</div><div> Flight line direction: 180deg / NS</div><div> Tie line spacing: 25km</div><div> Tie line direction: 270 deg / EW</div><div>Total line kilometers: 23,953.65</div><div> Nominal terrain clearance (above ground level): 710 m</div><div> Aircraft model: GippsAero GA-8 Airvan</div><div>Data Acquisition: Thomson Aviation Pty Ltd</div><div> Project Management: Geoscience Australia</div><div> Quality Control: CMG Operations Pty Ltd and Geoscience Australia</div><div> Dataset Ownership: GSWA and Geoscience Australia</div><div><br></div><div><strong>Files included in this download </strong></div><div>&nbsp;</div><div>This data package release contains the final survey deliverables received from the contractor Thomson Aviation, with an initial QC by CMG Operations Pty Ltd, then peer reviewed by Dr Jack McCubbine (Geoscience Australia).</div><div>&nbsp;</div><div>The horizontal datum and projection for all the data are GDA94 and MGA51, respectively.</div><div>&nbsp;</div><div><strong>1.</strong> <strong><em>Point-located Data / line data</em></strong></div><div>ASCII column XYZ and ASEG-GDF2 format with accompanying description and definition files. </div><div><br></div><div> <strong><em>2.Grids</em></strong> –</div><div> Datum:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;GDA94</div><div>Projection:&nbsp;&nbsp;MGA51</div><div>Grid cell size:&nbsp;500m</div><div>Format: ERMapper (.ers)</div><div>Gravity datum: AAGD07. </div><div>&nbsp;</div><div>There are 24 gridded data supplied in ERMapper (.ers) format. The grid cell size is 500 metres. The gravity datum used is AAGD07.</div><div><br></div><div> <strong>3. Reports</strong> </div><div> • Final survey logistic report delivered to Geoscience Australia by the survey contractor - <em>TNC-NE-CANNING-FINAL-REPORT.PDF</em></div><div>• QC report from the peer reviewing the data package: <em>Tanami - North East Canning QC report.pdf</em></div><div> </div><div>The data from this Tanami North East Canning survey can also be downloaded from the Geological Survey of Western Australia’s MAGIX platform at https://magix.dmirs.wa.gov.au and GeoVIEW.WA web mapping application at https://geoview.dmp.wa.gov.au/GeoView under reference number 71201.&nbsp;</div><div><br></div>