From 1 - 10 / 44
  • The Galilee Basin Hydrogeological Model is a numerical groundwater flow model of the Galilee subregion in Queensland, an area of approximately 300,000 square kilometres. The model encompasses the entire geological Galilee Basin as well as parts of the overlying Eromanga Basin and surficial Cenozoic sediments. The model includes aquifers that form part of the Great Artesian Basin (specifically those aquifers in the Eromanga Basin), a hydrogeological system of national significance (see Evans et al 2018). The development of the Galilee Basin Hydrogeological Model represented an ambitious, first-pass attempt to better understand potential regional-scale cumulative groundwater impacts of seven proposed coal mines in the Galilee Basin (as known circa 2014, see Lewis et al. 2014 for details). This work was commissioned as part of the bioregional assessment for the Galilee subregion (https://www.bioregionalassessments.gov.au/assessments/galilee-subregion). Geoscience Australia has made the flow model and associated datasets available to support further academic or research investigations within the region. Importantly though, due to a number of limitations and assumptions (outlined in the final model report, Turvey et al., 2015), the model is not suitable for decision-making in relation to water resource planning or management. Further, the model was not developed to predict potential groundwater impacts of any individual mining operations, but provides a regional cumulative development perspective. The groundwater model and associated report were produced by HydroSimulations under short-term contract to Geoscience Australia in 2015. The report is referenced in several products released as part of the bioregional assessment (BA) for the Galilee subregion. However, due to the size, complexity and limitations of this model, this model was not used as the primary groundwater modelling input for the Galilee BA. Further detail about the key modelling limitations and why it was unsuitable for use in the Galilee BA are outlined in the BA Groundwater modelling report (Peeters et al., 2018). References Evans T, Kellett J, Ransley T, Harris-Pascal C, Radke B, Cassel R, Karim F, Hostetler S, Galinec V, Dehelean A, Caruana L and Kilgour P (2018) Observations analysis, statistical analysis and interpolation for the Galilee subregion. Product 2.1-2.2 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. http://data.bioregionalassessments.gov.au/product/LEB/GAL/2.1-2.2. Lewis S, Cassel R and Galinec V (2014) Coal and coal seam gas resource assessment for the Galilee subregion. Product 1.2 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment. Department of the Environment, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. https://www.bioregionalassessments.gov.au/assessments/12-resource-assessment-galilee-subregion. Peeters L, Ransley T, Turnadge C, Kellett J, Harris-Pascal C, Kilgour P and Evans T (2018) Groundwater numerical modelling for the Galilee subregion. Product 2.6.2 for the Galilee subregion from the Lake Eyre Basin Bioregional Assessment. Department of the Environment and Energy, Bureau of Meteorology, CSIRO and Geoscience Australia, Australia. http://data.bioregionalassessments.gov.au/product/LEB/GAL/2.6.2. Turvey C, Skorulis A, Minchin W, Merrick NP and Merrick DP (2015) Galilee Basin hydrogeological model Milestone 3 report for Geoscience Australia. Prepared by Heritage Computing Pty Ltd trading as Hydrosimulations. Document dated 16 November 2015. http://www.bioregionalassessments.gov.au/sites/default/files/galilee-basin-hydrological-model-pdf.pdf. <b>The model is available on request from clientservices@ga.gov.au - Quote eCat# 146155</b>

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Galilee Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Galilee Basin aquifers and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water - groundwater interactions. The methods used to derive these data for all Galilee Basin aquifers in the Galilee Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Hostetler et al., 2023). The Galilee Basin includes 3 broadly defined aquifer intervals: from deepest to shallowest, these are the Joe Joe Group, Betts Creek beds and Clematis aquifers. Compiled data have been assigned to these intervals and used to characterise groundwater systems at the basin scale. The data were compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 were used for this compilation.

  • High-precision radiometric dating using Chemical Abrasion-Isotope Dilution Thermal Ionisation Mass Spectrometry (CA-IDTIMS) has allowed the recalibration of the numerical ages of Permian and Triassic spore-pollen palynozones in Australia. These changes have been significant, with some zonal boundaries in the Permian shifting by as much as six million years, and some in the Triassic by more than twice that. Most of the samples analysed came from eastern Australian coal basins (Sydney, Gunnedah, Bowen, Galilee) where abundant volcanic ash beds occur within the coal-bearing successions. The recalibrations of these widely used palynozones have implications for the dating of geological events outside the basins from where samples were obtained. Our revised dates for the Permian palynozones can now be applied to all Permian basins across Australia, including the Perth, Carnarvon, Canning and Bonaparte basins (along the western and northern continental margins), the Cooper and Galilee basins (in central Australia), and the Bowen, Gunnedah and Sydney basins (in eastern Australia). Revised regional stratigraphic frameworks are presented here for some of these basins. The impact of an improved calibration of biostratigraphic zones to the numerical timescale is broad and far-reaching. For example, the more accurate stratigraphic ages are the more closely burial history modelling will reflect the basin history, thereby providing control on the timing of kerogen maturation, and hydrocarbon expulsion and migration. These improvements can in turn be expected to translate in to improved exploration outcomes. We have initially focused on the Permian and provide preliminary results for the Triassic, but intend to expand recalibrations to include Jurassic, Cretaceous and Paleozoic successions beyond the Permian. Preliminary data indicates that significant changes to these calibrations are also likely.

  • Following the publication of Geoscience Australia record 2014/09: Petroleum geology inventory of Australia's offshore frontier basins by Totterdell et. al, (2014), the onshore petroleum section embarked upon a similar project for onshore Australian basins. The purpose of this project is to provide a thorough basis for whole of basin information to advise the Australia Government and other stakeholders, such as the petroleum industry, regarding the exploration status and prospectivity of onshore Australian basins. Eight onshore Australian basins have been selected for this volume and these include: the McArthur, South Nicholson, Georgina, Amadeus, Warburton, Wiso, Galilee and Cooper basins. This record provides a comprehensive whole of basin inventory of the geology, petroleum systems, exploration status and data coverage for these eight onshore Australian basins. It draws on precompetitive work programs by Geoscience Australia as well as publicly available exploration results and geoscience literature. Furthermore, the record provides an assessment of issues and unanswered questions and recommends future work directions to meet these unknowns.

  • Publicly available geology data are compiled to provide a common information base for resource development, environmental and regulatory decisions in the Galilee Basin region. This data guide gives examples of how these data can be used and supports the data package that provides the existing knowledge of the key geological intervals of the Galilee Basin and the overlying Eromanga, Lake Eyre and other Cenozoic basins. The key geological intervals identified by the Trusted Environmental and Geological Information (TEGI) Program for resource assessment and groundwater system characterisation are termed play intervals and hydrostratigraphic intervals respectively. The Galilee Basin includes 5 plays, which are consolidated into 3 hydrostratigraphic intervals (see Table 1). Overlying the Galilee Basin are 9 play intervals of the Eromanga Basin, which are consolidated into 7 hydrostratigraphic intervals and 1 Cenozoic play interval and 1 hydrostratigraphic interval for the Lake Eyre and other Cenozoic basins. The geological groups and formations included in the plays and hydrostratigraphic intervals are summarised in the stratigraphic charts of Wainman et al. (2023a). Gross depositional, depth structure and thickness maps are provided, with 3D model and cross-sections summarising the geology of the Galilee Basin and the overlying basins. The mapped depths and thicknesses of the key intervals are used to inform resource assessments and provide the framework for assigning groundwater data to hydrostratigraphic intervals.

  • Publicly available baseline surface water data are compiled to provide a common information base for resource development and regulatory decisions in the Galilee Basin region. This data guide captures existing knowledge of the catchments and watercourses overlying the Galilee Basin, including streamflow quality and quantity, inundation, and climatological data. The Galilee Basin straddles the Great Dividing Range and encompasses the headwaters of 9 major river basins, with the largest area underlying Cooper Creek, Diamantina River and Flinders River catchments. The Galilee Basin geological boundary also intersects parts of the catchment of the Burdekin River, Fitzroy River, Warrego River, Bulloo River, Paroo River and Condamine-Balonne rivers. The data on the catchments overlying the Galilee Basin have been summarised at a point in time to inform decisions on resource development activities. Key data sources are the Water Monitoring Information Portal (Queensland Government), Water Data Online (Bureau of Meteorology), DEA Water Observations (Geoscience Australia) and Terrestrial Ecosystem Research Network.

  • Across Australia, groundwater is a vital resource that supports and strengthens communities, culture, the environment and numerous industries. Movement of groundwater is complicated, taking place horizontally, vertically and across different timescales from weeks to millions of years. It is affected by changes in climate, human use, and geological complexities such as the type, geometry and distribution of rocks. Understanding how all these factors interact is known as a groundwater conceptual model and it is an important first step. This groundwater conceptualisation includes the Galilee Basin and the overlying Eromanga and Lake Eyre basins and other Cenozoic units as well as surface-groundwater interactions. Figure 1 shows the locations of the cross sections used to conceptualise groundwater in the Galilee Basin region. In the Galilee Basin extended region this includes 1 aquifer in the Lake Eyre Basin, 5 aquifers in the Eromanga Basin and 3 aquifers in the Galilee Basin (Wainman et al., 2023a, b). Confidence for each aquifer was calculated for both salinity and water levels (Hostetler et al., 2023a, b, c). The confidence for each aquifer was added to show the overall confidence for the basin. The level of knowledge across all aquifers are moderate to low. The groundwater conceptualisations summarise the groundwater flow and potential connectivity between aquifers. Figures also show the distribution of the aquifers and aquitards, average salinity, potential aquifer yield and confidence over an area of 50 km along the cross section lines.

  • <div>Two new programs at Geoscience Australia are providing trusted, high-quality science to support decision making and the Australian resources industry. </div><div>&nbsp;</div><div>The Trusted Environmental and Geological Information program will provide baseline pre-competitive data in the Cooper, Adavale, north Bowen and Galilee basin regions. A repository of information is being developed in collaboration with CSIRO, including new geological and environmental assessments, to accelerate development in the sectors of petroleum, mineral, hydrogen and carbon capture and storage, while simultaneously providing opportunities to understand the potential hazards, risk and impacts of these resources being developed.&nbsp;</div><div>&nbsp;</div><div>The Data Driven Discoveries program is combining new and old data to better understand the under-explored Adavale Basin in central-western Queensland. The program will undertake chemical composition analyses to support the correlation of geological layers, collate and reprocess historical seismic data, acquire new seismic reflection data, and undertake stratigraphic research drilling to provide a more detailed understanding of basin architecture and the resource potential of the Adavale Basin. </div><div>&nbsp;</div><div>An overview of the Trusted Environmental and Geological Information and Data Driven Discoveries programs will be provided, including initial results and planned acquisition. This will show how these complementary programs will contribute to streamlined regulation and approval processes, the low emissions agenda, and responsible resource development in key basin regions across Australia.</div> This Abstract was submitted/presented to the 2022 Petroleum Exploration Society of Australia (PESA) QLD Symposium 9 September (https://pesa.com.au/events/pesa-qld-2022-symposium/)

  • Publicly available data was compiled to provide a common information base for resource development, environmental and regulatory decisions in the Galilee Basin. This web service summarises oil and gas prospectivity of the Galilee Basin.

  • The potential for hydrogen production in the Galilee Basin region is assessed to provide a joint information base for hydrogen generation potential from renewable energy, groundwater and natural gas coupled with carbon capture and storage (CCS). Hydrogen generation requires water, whether using electrolysis with renewable energy or steam methane reforming (SMR) of gas with CCS. The data package includes the regional renewable energy capacity factor, aquifers and their properties (potential yield, salinity, and reserves or storativity), natural gas resources, and geological storage potential of carbon dioxide (CO2). This data guide gives examples of how the compiled data can be used. The renewable hydrogen potential is assessed based on renewable energy capacity factor and groundwater information (potential yield, salinity, and reserves or storativity). Nine aquifers from the Galilee and overlying Eromanga and the Lake Eyre basins are included in the assessment. The Galilee Basin region has low renewable hydrogen potential except for small areas in the north, south and south-west. Although the renewable energy capacity factor in the basin is high, aquifers tend to have poor groundwater reserves or storativity, which results in lower overall renewable hydrogen potential. The Galilee Basin contains modest contingent gas resources, while sizeable gas reserves and contingent resources were identified in the overlying Eromanga Basin (Geoscience Australia, 2022). The geological CO2 storage assessment suggests that the Betts Creek - Rewan Play interval is the most prospective for CCS, with the highest potential around the central basin region. Further work on identifying detailed gas potential is needed to assess hydrogen generation potential from gas.