From 1 - 10 / 498
  • An extensive AEM survey recently commissioned by Geoscience Australia involved the use of two separate SkyTEM helicopter airborne electromagnetic (AEM) systems collecting data simultaneously. In order to ensure data consistency between the two systems, we follow the Danish example (conceived by the hydrogeophysics group from Aarhus University) of using a hover test site to calibrate the AEM data to a known reference. Since 2001, Denmark has employed a national test site for all electromagnetic (EM) instruments that are used there, including the SkyTEM system. The Lyngby test-site is recognised as a well-understood site with a well-described layered-earth structure of 5 layers. The accepted electrical structure model of the site acts as the reference model, and all instruments are brought to it in order to produce consistent results from all EM systems. Using a ground-based time-domain electromagnetic (TEM) system which has been calibrated at the Lyngby test site, we take EM measurements at a site selected here in Australia. With sufficient information of the instrument, we produce a layered-earth model that becomes the reference model for the two AEM systems used in the survey. We then bring the SkyTEM systems to the hover site and take soundings at multiple altitudes. From the hover test data and the ground based model, we calculate an optimal time shift and amplitude scale factor to ensure that both systems are able reproduce the accepted reference model. Conductivity sections produced with and without calibration factors show noticeably different profiles.

  • Predictive maps of the subsurface can be generated when geophysical datasets are modelled in 2D and 3D using available geological knowledge. Inversion is a process that identifies candidate models which explain an observed dataset. Gravity, magnetic, and electromagnetic datasets can now be inverted routinely to derive plausible density, magnetic susceptibility, or conductivity models of the subsurface. The biggest challenge for such modelling is that any geophysical dataset may result from an infinite number of mathematically-plausible models, however, only a very small number of those models are also geologically plausible. It is critical to include all available geological knowledge in the inversion process to ensure only geologically plausible physical property models are recovered. Once a set of reasonable physical property models are obtained, knowledge of the physical properties of the expected rocks and minerals can be used to classify the recovered physical models into predictive lithological and mineralogical models. These predicted 2D and 3D maps can be generated at any scale, for Government-funded precompetitive mapping or drilling targets delineation for explorers.

  • An orogenic cycle typically follows a sequence of events or stages. These are basin formation and magmatism during extension, inversion and crustal thickening during contractional orogenesis, and finally extensional collapse of the orogen. The Archaean granite-greenstone terranes of the Eastern Yilgarn Craton (EYC) record a major deviation in this sequence of events. Within the overall contractional stage, the EYC underwent a lithospheric-scale extensional event between 2665 Ma and 2655 Ma, resulting in changes to the entire orogenic system. These changes associated with regional extension include: the crustal architecture; greenstone stratigraphy; granite magmatism; thermo-barometry (PTt paths); and structure. Synchronous with these changes was the deposition of the first significant gold, and it is likely that the intra-orogenic extensional event was one of the critical factors in the region's world-class gold endowment.

  • The Australian Government formally releases new offshore exploration areas at the annual APPEA conference. In 2012, twenty-seven areas in nine offshore basins are being released for work program bidding. Closing dates for bid submissions are either six or twelve months after the release date, i.e. 8 November 2012 and 9 May 2013, depending on the exploration status in these areas and on data availability. As was the case in 2011, this year's Release again covers a total offshore area of about 200,000 km2. The Release Areas are located in Commonwealth waters offshore Northern Territory, Western Australia, South Australia, Victoria and Tasmania (Figure 1). Areas on the North West Shelf feature prominently again and include underexplored shallow water areas in the Arafura and Money Shoal basins and rank frontier deep water areas in the outer Browse and Roebuck basins as well as on the outer Exmouth Plateau. Following the recent uptake of exploration permits in the Bight Basin (Ceduna and Duntroon sub-basins) Australia's southern margin is well represented in the 2012 Acreage Release. Three new blocks in the Ceduna Sub-basin, four blocks in the Otway Basin, one large block in the Sorell Basin and two blocks in the eastern Gippsland Basin are on offer. Multiple industry nominations for this Acreage Release were received, confirming the healthy status of exploration activity in Australia. The Australian government continues to support these activities by providing free access to a wealth of geological and geophysical data.

  • The Asia-Pacific region is highly susceptible to a variety of natural hazards. In particular, geophysical and atmospheric hazards threaten the livelihood of people within the region and the impacts of these hazards can significantly affect economic development. The Australian Agency for International Development (AusAID) has identified Disaster Risk Reduction as a priority in a number of countries in the Asia-Pacific region. Geoscience Australia is partnering with AusAID to strengthen the capacity of governments in Indonesia, the Philippines and Papua New Guinea to undertake natural hazard risk and impact analysis. The objective of these programs is to better prepare for, and protect from, natural disasters by informing the reduction in risk from various hazards. It is also expected that this enhanced capacity can be further applied to climate change impacts analysis. A key aspect of each the programs is the application of spatial information for hazard modelling, development of information on exposure (e.g. elements at risk such as residential buildings, key facilities, infrastructure) and the understanding of the vulnerability of structures, communities and infrastructure. Geoscience Australia is providing technical leadership and support to partner agencies in the identification of existing datasets and through provision of new and enhanced data. Geoscience Australia is supporting the development and management of value-added, spatially-enabled datasets in a number of locations to underpin the natural hazard risk analysis process. These activities also aim to provide technical partners with repeatable techniques and sustainable tools for the ongoing development and maintenance of these datasets into the future.

  • In many areas of the world, vegetation dynamics in semi-arid floodplain environments have been seriously impacted by increased river regulation and groundwater use. With increases in regulation along many rivers in the Murray-Darling Basin, flood volume, seasonality and frequency have changed which has in turn affected the condition and distribution of vegetation. Floodplain vegetation can be degraded from both too much and too little water due to regulation. Over-regulation and increased use of groundwater in these landscapes can exacerbate the effects related to natural climate variability. Prolonged flooding of woody plants has been found to induce a number of physiological disturbances such as early stomatal closure and inhibition of photosynthesis. However, drought conditions can also result in leaf biomass reduction and sapwood area decline. Depending on the species, different inundation and drought tolerances are observed. Identification of groundwater-dependent terrestrial vegetation, and assessment of the relative importance of different water sources to vegetation dynamics, typically requires detailed ecophysiological studies over a number of seasons or years as shown in Chowilla, New South Wales [] and Swan Coastal Plain, Western Australia []. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Quicker, more regional approaches to mapping groundwater-dependent vegetation have consequently evolved with technological advancements in remote sensing techniques. Such an approach was used in this study. LiDAR canopy digital elevation model (CDEM) and foliage projected cover (FPC) data were combined with Landsat imagery in order to characterise the spatial and temporal behaviour of woody vegetation in the Lower Darling Floodplain, New South Wales. The multi-temporal dynamics of the woody vegetation were then compared to the estimated availability of different water sources in order to better understand water requirements.

  • The Archean Yilgarn Craton of Western Australia, is not only one of the largest extant fragments of Archean crust in the world, but is also one of the most richly-mineralised regions in the world. Understanding the evolution of the craton is important, therefore, for constraining Archean geodynamics, and the influence of such on Archean mineral systems. The Yilgarn Craton is dominated by felsic intrusive rocks - over 70% of the rock types. As such these rocks hold a significant part of the key to understanding the four-dimensional evolution of the craton, providing constraints on the nature and timing of crustal growth, the role of the mantle, and also the timing of important switches in crustal growth geodynamics. The granites also provide constraints on the nature and age of the crustal domains within the craton. Importantly, this crustal pre-history appears to have exerted a significant, but poorly understood, spatial control on the distribution of mineral systems, such as gold, komatiite-associated nickel sulphide and volcanic-hosted massive sulphide (VHMS) base metal systems

  • Large areas of prospective North and North-East Queensland have been surveyed by airborne hyperspectral sensor, HyMap, and airborne geophysics as part of the 'Smart' exploration initiative by the Geological Survey of Queensland. In particular, 25000 km2 of hyperspectral mineral and compositional map products, at 4.5 m spatial resolution, have been generated and made available via the internet. In addition, more than 130 ASTER scenes were processed and merged to produce broad scale mapping of mineral groups (Thomas et al, 2008). Province-scale, accurate maps of mineral abundances and minerals chemistries were generated for North Queensland as a result of a 2 year project starting in July 2006 which involved CSIRO Exploration and Mining, the Geological Survey of Queensland (GSQ), Geoscience Australia, James Cook University, and Curtin University. Airborne radiometric data acquired over the same North Queensland Mt Isa - Cloncurry areas as the hyperspectral surveys, had been acquired at flight line spacing of 200 metre. Such geophysical radiometric data provides a useful opportunity to compare the mineral mapping potential of both techniques, for a wide range of geological and vegetated environments. In this study, examples are described of soil mapping within the Tick Hill area, and geological / exploration mapping within the Mt Henry and Suicide Ridge prospects of North Queensland.

  • Now in its third year, Geoscience Australia's Onshore Energy Security Program has acquired several suites of regional geological and geophysical data. The data include several deep seismic reflection surveys that have been designed to image: - basement provinces with high geothermal gradients that may contain Uranium enrichments and are potential candidates for geothermal energy, - geological terrane boundaries and - sedimentary basins that are known to host petroleum system elements but are under-explored. Seismic signals are recorded down to 20 seconds two-way-time (TWT) which corresponds to 25-35 km depth depending on dominant lithologies. Basinal sections normally extend down to 6-8 secTWT and the data is of such high quality that any section of the seismic profile can be enlarged without significant loss of resolution. Deep reflection surveys are able to image the relationship between crystalline basement and overlying basin sequences very clearly and also allow interpretations of structural styles as well as impacts of deformational processes on the basin-fill. A new basinal section was discovered beneath the Eromanga Basin suite of sediments. Named the 'Mullangera Basin', its structural style and basement relationship seem to indicate some affinity with the Georgina Basin further west. The succession is clearly composed of several sequences that contain both fine-and coarse-grained sediments. If a geological relationship with the Georgina Basin can be ascertained, a new hydrocarbon prospective area could be delineated. Another new section was discovered beneath the Devonian section of the Darling Basin. Judging by the fast acoustic velocities the entire basin-fill sequence appears to be very dense and therefore largely non-porous and of low permeability.