From 1 - 10 / 36
  • Carbon Capture and Storage (CCS) is a technique for mitigating anthropogenic climate change by separating CO2 from industrial flue gas, transporting it to and storing it in a subsurface geological storage reservoir. The low-salinity (TDS<3 000 mg/L) Jurassic sandstone formations in Australia's Surat Basin have been identified as a potential reservoir system for geological CO2 sequestration. However, given the prevailing use of saline reservoirs in CCS projects elsewhere, limited data are available on CO2-water-rock dynamics during geological sequestration in such low-salinity formations. Here, a combined batch experiment and numerical modelling approach is used to characterise potential CO2-water-rock reaction pathways, to assess potential impacts of CCS on groundwater chemistry, and to identify geochemical tracers of inter- and intra-formational CO2 migration during geological sequestration within the Jurassic sandstones. Mineralogy and physical properties of the prospective reservoir are characterized for 66 core samples from stratigraphic well GSQ Chinchilla 4. Representative samples are reacted with synthetic formation water and high-purity CO2 for up to 27 days at a range of pressures to simulate conditions during carbon sequestration in the Jurassic sandstones. Results show the low formation water salinity, temperature, and mineralization in the reservoirs yield high solubility trapping capacity (1.18 mol/L at 45°C, 100 bar), while the paucity of divalent cations in groundwater and the silicate reservoir matrix result in very low mineral trapping capacity within the footprint of the supercritical CO2 (scCO2) plume. Though alkalinity buffers formation water pH under elevated CO2 pressure, the acidic pH significantly enhances mineral dissolution in reactors with heterogeneous Hutton and Boxvale Sandstone samples. Smaller TDS changes are observed for samples of the mature Precipice Sandstone than for the other formations. Non-radiogenic, regional groundwater-like 87Sr/86Sr values (0.704845 - 0.706600) in batch reactors indicate carbonate and authigenic clay dissolution as the primary reaction pathways regulating solution composition in all formations during carbon sequestration. Slightly higher Sr isotope ratios in felsic samples than in calcitic samples, and dissolved Si concentrations in mature Precipice Sandstone reactors show detrital silicate dissolution to be an ancillary process. Batch reactor degassing at the end of the incubation period was simulated to assess geochemical changes in formation waters during transport away from a scCO2 plume. Model results suggest geological sequestration in the Jurassic sandstone formations would increase regional groundwater alkalinity and redistribute carbonate minerals outside the scCO2 footprint, but is unlikely to result in net mineral trapping of CO2. Several elements are mobilised in concentrations greater than found in regional groundwater, making them viable tracers of CO2 migration. Most notable is cobalt, concentrations of which are significantly elevated regardless of CO2 pressure or sample mineralogy. Experimental results indicate manganese and cadmium concentrations may locally exceed drinking water quality guidelines, but further modelling of intra aquifer mixing is required to quantify the potential risk to regional groundwaters from trace element mobilisation.

  • The Paleo- to Mesoproterozoic McArthur Basin and Mount Isa region of northern Australia (Figure 1) is richly-endowed with a range of deposit types (e.g., Ahmad et al., 2013; Geological Survey of Queensland, 2011). These include the basin-hosted base metal (Zn-Pb-Ag) deposits of the North Australian Zinc Belt, the richest zinc province in the world (Geological Survey of Queensland, 2011; Huston et al., 2006), as well as Cu (e.g., Mt Isa Copper) and IOCG (e.g., Ernest Henry) deposits (Geological Survey of Queensland, 2011). The giant size of the base metal deposits makes them attractive exploration targets and significant effort has been undertaken in understanding their genesis and setting and developing methodologies and data sets to aid in further discovery. As part of its Exploring for the Future program, Geoscience Australia is acquiring new, and reprocessing old, data sets to provide industry with new exploration tools for these basin-hosted Zn-Pb and Cu deposits, as well as iron-oxide copper-gold deposits. We have adopted a mineral systems approach (e.g., Huston et al., 2016) focussing on regional aspects such as source rocks, locations of mineral deposits, mineralisation haloes and footprints. Increased understanding of these aspects requires knowledge of the background variability of unaltered rocks within the basin. To assist in this we have undertaken a campaign of baseline geochemical studies, with over 800 new samples collected from sedimentary and igneous units of selected parts of the greater McArthur Basin–Mount Isa region. This has allowed us to document temporal and regional background geochemical (and mineralogical) variation within, and between sedimentary and igneous units. The main focus of this work was directed towards aspects of base metal mineralisation; a concurrent GA study (e.g., Jarrett et al., 2019) looking at aspects of hydrocarbon potential was undertaken in parallel. Appeared in Annual Geoscience Exploration Seminar (AGES) Proceedings, Alice Springs, Northern Territory 24-25 March 2020, p. 105

  • <b>IMPORTANT NOTICE:</b> This web service has been deprecated. The Hydrochemistry Service OGC service at https://services.ga.gov.au/gis/hydrogeochemistry/ows should now be used for accessing Geoscience Australia hydrochemistry analyses data. This is an Open Geospatial Consortium (OGC) web service providing access to hydrochemistry data (groundwater analyses) obtained from water samples collected from Australian water bores.

  • <b>IMPORTANT NOTICE: </b>This web service has been deprecated. The Australian Onshore and Offshore Boreholes OGC service at https://services.ga.gov.au/gis/boreholes/ows should now be used for accessing Geoscience Australia borehole data. This is an Open Geospatial Consortium (OGC) web service providing access to a subset of Australian geoscience samples data held by Geoscience Australia. The subset currently relates specifically to Australian Boreholes.

  • <b>Legacy service retired 29/11/2022</b> This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data conforming to the GeoSciML version 4.0 specification. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.

  • <b>Legacy service retired 29/11/2022 IMPORTANT NOTICE:</b> This web service has been deprecated. The Australian Onshore and Offshore Boreholes OGC service at https://services.ga.gov.au/gis/boreholes/ows should now be used for accessing Geoscience Australia borehole data. This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data. This web service is intended to complement the borehole GeoSciML-Portrayal v4.0 web service, providing access to the data in a simple, non-standardised structure. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.

  • <b> Legacy service retired 29/11/2022</b> This is an Open Geospatial Consortium (OGC) web service providing access to Australian onshore and offshore borehole data conforming to the GeoSciML version 4.0 specification. The borehole data includes Mineral Drillholes, Petroleum Wells and Water Bores along with a variety of others types. The dataset has been restricted to onshore and offshore Australian boreholes, and bores that have the potential to support geological investigations and assessment of a variety of resources.

  • Geoscience Australia and its predecessors have analysed the hydrochemistry of water sampled from bores, surface features, rainwater and core samples (pore water). Samples have been collected during drilling or monitoring projects, including Exploring for the Future (EFTF). The hydrochemistry database includes physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, isotopes and nutrients. The resource is accessible via the Geoscience Australia Portal <a href="https://portal.ga.gov.au/">(https://portal.ga.gov.au/)</a>

  • This report presents the results of an elemental and carbon and oxygen isotope chemostratigraphy study on three historic wells; Kidson-1, Willara-1 and Samphire Marsh-1, from the southern Canning Basin, Western Australia. The objective of this study was to correlate the Early to Middle Ordovician sections of the three wells to each other and to wells with existing elemental and carbonate carbon isotope chemostratigraphy data from the Broome Platform, Kidson and Willara sub-basins, and the recently drilled and fully cored stratigraphic Waukarlycarly 1 well from the Waukarlycarly Embayment.

  • This database contains geochemical data for samples analysed both for inorganic and organic geochemistry. Analytical data are sourced from Geoscience Australia's Inorganic Geochemistry Database (OZCHEM) and Organic Geochemistry Database (ORGCHEM), respectively. The data are joined on a unique sample number. Inorganic geochemical data cover the majority of the periodic table, with metadata on analytical methods and detection limits. Organic geochemical data include results of pyrolysis, derivative calculated values, and, where available, isotopic composition of carbonates (D13C) and isotopic composition of rock nitrogen (D15N). Further, there are provisions for delivery of isotopic data for kerogen (H, C, N) and oxygen (O) for carbonates. Where available, sample descriptions include stratigraphic unit names and ages, and lithology. Location information includes coordinates of the sampled feature (eg, borehole), coordinates of the sample and sample depth. Interpretation of the combined inorganic and organic geochemistry for organic-rich shales will facilitate comprehensive characterisation of hydrocarbons source rocks and mineral commodities source and trap environments. All are achieved within the frameworks of petroleum and mineral systems analysis. The initial data delivered by this service include 1785 samples from 35 boreholes from 14 geological provinces, including recently released data for 442 samples from the South Nicholson National Drilling Initiative Carrara 1 stratigraphic drill hole (Butcher et al., 2021; Carson et al., 2021). Many sampled boreholes are located within the polygon of the Exploring for the Future Barkly-Isa-Georgetown project. This dataset will be updated periodically as more data become available.