GEOPHYSICS
Type of resources
Keywords
Publication year
Topics
-
The magnetotelluric (MT) method is increasingly being applied to map tectonic architecture and mineral systems. Under the Exploring for the Future (EFTF) program, Geoscience Australia has invested significantly in the collection of new MT data. The science outputs from these data are underpinned by an open-source data analysis and visualisation software package called MTPy. MTPy started at the University of Adelaide as a means to share academic code among the MT community. Under EFTF, we have applied software engineering best practices to the code base, including adding automated documentation and unit testing, code refactoring, workshop tutorial materials and detailed installation instructions. New functionality has been developed, targeted to support EFTF-related products, and includes data analysis and visualisation. Significant development has focused on modules to work with 3D MT inversions, including capability to export to commonly used software such as Gocad and ArcGIS. This export capability has been particularly important in supporting integration of resistivity models with other EFTF datasets. The increased functionality, and improvements to code quality and usability, have directly supported the EFTF program and assisted with uptake of MTPy among the international MT community. <b>Citation:</b> Kirkby, A.L., Zhang, F., Peacock, J., Hassan, R. and Duan, J., 2020. Development of the open-source MTPy package for magnetotelluric data analysis and visualisation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
We present a resistivity model of the southern Tasmanides of southeastern Australia using Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) data. Modelled lower crustal conductivity anomalies resemble concentric geometries revealed in the upper crust by potential field and passive seismic data. These geometries are a key part of the crustal architecture predicted by the Lachlan Orocline model for the evolution of the southern Tasmanides, in which the Proterozoic Selwyn Block drives oroclinal rotation against the eastern Gondwana margin during the Silurian period. For the first time, we image these structures in three dimensions (3D) and show they persist below the Moho. These include a lower crustal conductor largely following the northern Selwyn Block margin. Spatial association between lower crustal conductors and both Paleozoic to Cenozoic mafic to intermediate alkaline volcanism and gold deposits suggests a genetic association i.e. fluid flow into the lower crust resulting in the deposition of conductive phases such as hydrogen, iron, sulphides and/or graphite. The 3D model resolves a different pattern of conductors in the lithospheric mantle, including northeast trending anomalies in the northern part of the model. Three of these conductors correspond to Cenozoic leucitite volcanoes along the Cosgrove mantle hotspot track which likely map the metasomatised mantle source region of these volcanoes. The northeasterly alignment of the conductors correlates with variations in the lithosphere-asthenosphere boundary (LAB) and the direction of Australian plate movement, and may be related to movement of an irregular LAB topography over the asthenosphere. By revealing the tectonic architecture of a Phanerozoic orogen and the overprint of more recent tectono-magmatic events, our resistivity model enhances our understanding of the lithospheric architecture and geodynamic processes in southeast Australia, demonstrating the ability of magnetotelluric data to image geological processes over time.
-
The Australian Passive Seismic Array Project (AusArray) program was developed from a long history of passive seismic imaging in Australia involving many contributors. Building on this history, the Australian Government and academia have united around AusArray. The objective is a standardised and quality controlled national passive seismic data coverage and an updatable national seismic velocity model framework that can be used as a background for higher-resolution studies. This document details the field activities and equipment preparation for temporary passive seismic station deployment, service and retrieval. Equipment cleaning and testing and database details are also described. The standard operating procedures applied during these activities were established during the deployment of two temporary passive seismograph arrays under the Australian Government’s Exploring for the Future (EFTF) program. These arrays consisted of 120–130 stations deployed in the Northern Territory and Queensland for over a year in a grid pattern with a lateral spacing of half a degree (~55 km). The temporary passive seismograph stations comprised Nanometrics Trillium Compact 120S broadband seismic sensors connected to a Güralp minimus digitiser. Batteries charged by a solar panel powered both instruments. Each station in the array was serviced, i.e. repairs if required and interim data was retrieved, at least once during the deployment.
-
Geoscience Australia first sought feedback on a metadata standard for magnetotelluric (MT) time-series data in 2018 with the publication of a Preview article (Kirkby, 2019) outlining suggestions for metadata fields that should be collected when running an MT survey. This was the first step in standardising the MT formats used by the Australian MT community to ensure a cohesive community approach moving forward. Intrepid Geophysics was subsequently contracted by Geoscience Australia to investigate the current community sentiment around a metadata standard and report on the community’s requirements for a standardised data format. Intrepid Geophysics was chosen as an independent party that had no significant stake in the magnetotellurics discussion. This report is the third made to Geoscience Australia in a series investigating the needs of the Australian magnetotelluric community, with a focus on the definition of the metadata that should be collected along with the raw data of an MT survey. The findings were collated from interviews conducted in the preliminary stage of the project as well as an online questionnaire that was sent to those who had agreed to be contacted. Feedback was constructive, centring on standardisation of parameter naming schemes, adding parameters that were missing and could add value, and misclassification of parameters. Future work should focus on a more widespread community engagement program that involves system manufacturers as well as building the metadata structure around the chosen data format.
-
This package contains Airborne Electromagnetic (AEM) data from the regional survey flown over the Great Artesian Basin intake beds in Queensland, Australia in May-June 2021. A total of 4,612.3 line km of transient EM and magnetic data were acquired. The projected grid coordinates have been supplied in GD2020 / MGA Zone 55. The aim of the survey is to provide geophysical information to support investigations of the regional groundwater system and to better understand the architecture of the aquifers within the upper few hundred metres of the GAB intake beds. It will provide data to allow for the study of the following at a reconnaissance scale: a) trends in regolith thickness and variability b) variations in bedrock conductivity c) conductivity of key bedrock (lithology related) conductive units under cover d) the groundwater resource potential of the region Geoscience Australia (GA) flew the survey as part of the Great Artesian Basin (GAB) Project. The Australian Government, through the National Water Infrastructure Fund – Expansion, commissioned GA to undertake the GAB project. The project is led by GA, in collaboration with the Department of Agriculture, Water and the Environment; Department of Infrastructure, Transport, Regional Development and Communications; the Bureau of Meteorology; and state and territory government water agencies across Queensland, South Australia, New South Wales and the Northern Territory.
-
Instrumentally observed earthquakes sequences typically show clusters of earthquakes interspersed with periods of quiescence. These ‘bursty’ sequences also have correlated inter-event times (‘long-term memory’). In contrast, elastic rebound theory forms the basis of the standard earthquake cycle model, and predicts large earthquakes to occur regularly through cycles of strain accumulation and release (periodicity). In this model the conditional probability of future large earthquakes is reduced immediately following fault rupture, and inter-event times are independent. Here we use the burstiness and memory coefficient metrics to characterize more than 100 long-term earthquake records. We find that large earthquake occurrence on the majority of Earth’s faults is weakly periodic and does not exhibit long-term memory; earthquakes occur more regularly than a random Poisson process although inter-event times are variable. In contrast, clustering occurs in slowly deforming regions (annual rates < 2 x 10-4), and is not explained by elastic rebound theory. <b>Citation:</b> Griffin, J. D., Stirling, M. W., & Wang, T. (2020). Periodicity and clustering in the long‐term earthquake record. <i>Geophysical Research Letters</i>, 47, e2020GL089272. https://doi.org/10.1029/2020GL089272
-
Modern magnetotellurics (MT) offers a multiscale capability to image the electrical properties of Earth’s crust and upper mantle. The data it provides and the models derived from it are important geophysical contributions to understanding Earth’s geology and resource potential. In Australia, MT data is acquired by the resource exploration industry, university-based research groups, and Federal, State and Territory geological surveys. To ensure this data can be used to its full potential, including by groups and individuals who may not have been responsible for its acquisition, it is important that community-agreed standards be adopted for the acquired data and its associated metadata. <b>Citation: </b>Jingming Duan, Alison Kirkby, Darren Kyi, Wenping Jiang, Marina Costelloe & Adrian Hitchman (2021) Metadata standards for magnetotelluric time-series data, <i>Preview</i>, 2021:215, 61-63. DOI: 10.1080/14432471.2021.2012035
-
Airborne electromagnetic (AEM) data measure variations in the conductivity of the ground by transmitting an electromagnetic signal from a system attached to a plane or helicopter. Depending on the AEM system used and the sub-surface conditions, AEM techniques can detect variations in the conductivity of the ground to a depth of several hundred metres. The responses recorded are commonly caused by the presence of electrically conductive materials such as salt or saline water, graphite, clays and sulphide minerals. <b>Value:</b> Data used for interpreting the geologic structure of the subsurface. This work can be used for the assessment of resource potential. <b>Scope:</b> Systematic coverage of large portions of the Australian continent.
-
This data collection is comprised of radiometric (gamma-ray spectrometric) surveys acquired across Australia by Commonwealth, State and Northern Territory governments and the private sector with project management and quality control undertaken by Geoscience Australia. The radiometric method measures naturally occurring radioactivity arising from gamma-rays. In particular, the method is able to identify the presence of the radioactive isotopes potassium (K), uranium (U) and thorium (Th). The measured radioactivity is then converted into concentrations of the radioelements K, U and Th in the ground. Radiometric surveys have a limited ability to see into the subsurface with the measured radioactivity originating from top few centimetres of the ground. These surveys are primarily used as a geological mapping tool as changes in rock and soil type are often accompanied by changes in the concentrations of the radioactive isotopes of K, U and Th. The method is also capable of directly detecting mineral deposits. For example, K alteration can be detected using the radiometric method and is often associated with hydrothermal ore deposits. Similarly, the method is also used for U and Th exploration, heat flow studies, and environmental mapping purposes such as characterising surface drainage features. The instrument used in radiometric surveys is a gamma-ray spectrometer. This instrument measures the number of radioactive emissions (measured in counts per second) and their energies (measured in electron volts (eV)). Radiometric data are simultaneously acquired with magnetic data during airborne surveys and are a non-invasive method for investigating near-surface geology and regolith.
-
This animation shows how Airborne Electromagnetic Surveys Work, when conducted by a rotary wing (helicopter) aircraft. It is part of a series of Field Activity Technique Engagement Animations. The target audience are the communities that are impacted by our data acquisition activities. There is no sound or voice over. The 2D animation includes a simplified view of what AEM equipment looks like, what the equipment measures and how the survey works.