From 1 - 10 / 29
  • The AusAEM1 airborne electromagnetic survey extends across an area exceeding 1.1 million km2 over Queensland and the Northern Territory. Approximately 60,000 line kilometres of data were acquired at a nominal line spacing of 20 km (Ley-Cooper et al., 2020). To improve targeting and outcomes for mineral, energy and groundwater exploration, we conducted a regional interpretation of this dataset to characterise the subsurface geology of northern Australia. The interpretation includes the depth to chronostratigraphic surfaces, compilation of stratigraphic relationship information, and delineation of structural and electrically conductive features. In addition to help connecting correlative outcropping units separated by up to hundreds of kilometres, the results led to 3D mapping of palaeovalleys and prompted further investigation of electrical conductors and their relationship to structural features and mineralisation. Approximately 200,000 regional depth point measurements, each attributed with detailed geological information, are an important step towards a national geological framework, and offer a regional context for more detailed, smaller-scale AEM surveys. Refer to Wong et al., (2020) for more details on the AusAEM1 interpretation.

  • AusAEM-WA, Murchison Airborne Electromagnetic Survey Blocks: SkyTEM® airborne electromagnetic data and GALEI inversion conductivity estimates The accompanying data package, titled “AusAEM–WA, Murchison Airborne Electromagnetic Survey Blocks: SkyTEM® airborne electromagnetic data and GALEI inversion conductivity estimates”, was released on March 2022 by Geoscience Australia (GA) in collaboration with the Geological Survey of Western Australia. The data represents the first second of the AusAEM2020 (WA) survey flown with a with a rotary aircraft contracted to Geoscience Australia, using the SkyTEM® airborne electromagnetic system. The survey was flown at a 20-kilometre nominal line spacing over the most over the Murchison area and across to the west coast of Western Australia. The area encompasses over 17,600 line kilometres of newly acquired airborne electromagnetic geophysical data. This package contains (~17,600 kms) of the total of survey data which have been quality-controlled, processed, modelled and inverted both by the contractor and by GA. The survey was divided in four blocks, flown east-west. All four block’s projected grid coordinates have been supplied in GDA2020 MGA Zone 50 datum, and contain the geodetic latitude and longitude coordinate fields. Geoscience Australia and Western Australia (Department of Mines, Industry Regulation and Safety) commissioned the AusAEM 2020 survey as part of the national airborne electromagnetic acquisition program, to complete 20km line separation AEM coverage over WA. The program is designed to deliver freely available pre-competitive geophysical data to assist in the investigation and discovery of potential mineral, energy and groundwater resources within Australia. Funding for the survey came from the Western Australian government’s Exploration Incentive Scheme and additional support from the State’s COVID-19 recovery plan. Geoscience Australia managed the survey data acquisition, processing, contracts, quality control of the survey and generated the inversion products included in the data package. The data release package contains 1. A data release package summary PDF document. 2. The survey logistics and processing report. 3. KML and Shapefiles for the regional flight lines. 4. Final processed point located line data in ASEG-GDF2 format. 5. Conductivity estimates generated by SkyTEM’s Workbench. 6. Conductivity estimates and products (suitable for various 3D packages) generated by Geoscience Australia's Layered Earth Inversion algorithm.

  • <p>Geoscience Australia commissioned the AusAEM Year 1 NT/QLD survey as part of the Exploring for the Future (EFTF) program, flown over parts of the Northern Territory and Queensland. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia. The program was designed to investigate the potential mineral, energy and groundwater resources in northern Australia and South Australia. <p>The survey was flown during the 2017-2018 field season, using the TEMPEST® airborne electromagnetic (AEM) system operated by CGG Aviation (Australia) Pty. Ltd under contract to Geoscience Australia. AusAEM Year 1 was acquired with a 20-kilometre line separation and collected over 60,000 line kilometres of data in total. The AusAEM Year 1 NT/QLD survey also includes over 1,500 line kilometres of infill flying, which, was funded by private exploration companies in certain infill blocks within the survey area. The data from these infill blocks are now part of Geoscience Australia release to the public domain, for use in the minerals, energy and groundwater sectors. <p> Previously Released data (Phase 1) <p>In December 2018, we released a package, which contains data from the AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey Phase 1. <p>This data package, with eCat ID 124092 titled “AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey, TEMPEST® airborne electromagnetic data and Em Flow® conductivity estimates”. The package contains a) survey logistics and processing report, b) final processed electromagnetic, magnetic and elevation point located line data, c) processed electromagnetic, magnetic and elevation grids, d) point located conductivity estimates from EM Flow®, e) multi-plots of line data and conductivity sections, all produced by the contractor CGG Aviation (Australia) Pty. These products are downloadable from Geoscience Australia’s website: (See http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_124092). <p>The data provides new insights into vast areas in Northern Australia that have not been extensively explored previously. <p>Current Release (Phase 2) <p>This Phase 2 data release package contains results from inverting the electromagnetic data in the Phase 1 release. The inversion results were generated using Geoscience Australia's sample-by-sample layered-earth (1D) inversion, a deterministic regularized gradient-based algorithm, which we call GALEISBS (Brodie, 2016). <p>For the inversion of TEMPEST AEM data we have conventionally inverted the total (primary plus secondary) measured X-and Z-component data simultaneously to produce a single smooth layered conductivity model. To achieve convergence and derive an acceptable model and acceptable data misfits, we have found that it is necessary to solve for three geometry parameters; (1) Transmitter (Tx) –Receiver (Rx) horizontal in-line and 2) vertical separations and 3) the receiver pitch. This is the case even with the new Rx bird IMU measurements and calibrated data (Ley-Cooper et.al, 2019.). <p>We have extended the GALEISBS functionality to allow inversion of the vector sum of the X- and Z-component data. The rationale of modifying the algorithm is to eliminate the need to solve for Rx pitch, since the vector sum of the X- and Z-component data are insensitive to the Rx pitch. In doing this, we are gaining some robustness by not having to solve for one of the geometry parameters; however, the trade-off is that we are in essence losing the information implicit in the vector component data. <p>The inversions we deliver here we derived from a recently implemented XZ–vector-sum inversion, described in Ley-Cooper et.al, 2019. <p>The GALEISBS inversion products are available for download in parts based on the type of derived product. These are zipped into the following three files: <p>1. galeisbs_vector_sum_point_located_data_ascii.zip <p>2. galeisbs_vector_sum_point_located_data_geosoft.zip <p>3. galeisbs_vector_sum_sctions.zip <p>4. galeisbs_vector_sum_gocad_sgrids.zip

  • The AusAEM Year 1 NT/QLD Airborne Electromagnetic Survey covers the Newcastle Waters and Alice Springs 1:1 Million map sheets in the Northern Territory, plus the Normanton and Cloncurry 1:1 Million map sheets in Queensland. The survey was flown at 20 kilometre line spacing and entails approximately 60,000 line kilometres of data in total. The data were acquired in 2017 and 2018 by CGG Aviation (Australia) Pty. Ltd. (CGG), under contract to Geoscience Australia, using the TEMPEST® airborne electromagnetic system. The data were also processed by CGG. This Tranche 1 data release package only contains approximately the first one third (19,500 line kilometres) of the survey data that were acquired between August 4 and October 7, 2017. The AusAEM Year 1 NT/QLD survey also included over 1,500 line kilometres of infill flying, that was funded by private exploration companies, in certain infill blocks within the survey area. These infill blocks and data are not part of this data release due to confidentiality agreements. The survey was commissioned by Geoscience Australia as part of the Exploring for the Future (EFTF) program. The EFTF program is led by Geoscience Australia (GA), in collaboration with the Geological Surveys of the Northern Territory, Queensland, South Australia and Western Australia, and is investigating the potential mineral, energy and groundwater resources in northern Australia and South Australia. The EFTF is a four-year $100.5 million investment by the Australian Government in driving the next generation of resource discoveries in northern Australia, boosting economic development across this region. This Data Release Package (Tranche 1, Phase 1) contains the final survey deliverables produced by the contractor CGG, including: (a) the operations and processing report, (b) final processed electromagnetic, magnetic and elevation point located line data, (c) final processed electromagnetic, magnetic and elevation grids, (d) conductivity estimates generated by the EM Flow® conductivity depth imaging algorithm, (e) graphical multiplots of line data and EM Flow® conductivity sections, (f) graphical stacked EM Flow® conductivity sections, (h) ESRI shapefiles containing the flight line locations. Future data release packages will contain data flown after October 7 2017 (Tranche 2, etc.) and further derived products (Phase 2, etc.).

  • <div> A key issue for explorers in Australia is the abundant sedimentary and regolith cover obscuring access to underlying potentially prospective rocks. &nbsp;Multilayered chronostratigraphic interpretation of regional broad line-spaced (~20&nbsp;km) airborne electromagnetic (AEM) conductivity sections have led to breakthroughs in Australia’s near-surface geoscience. &nbsp;A dedicated/systematic workflow has been developed to characterise the thickness of cover and the depth to basement rocks, by delineating contact geometries, and by capturing stratigraphic units, their ages and relationships. &nbsp;Results provide a fundamental geological framework, currently covering 27% of the Australian continent, or approximately 2,085,000&nbsp;km2. &nbsp;Delivery as precompetitive data in various non-proprietary formats and on various platforms ensures that these interpretations represent an enduring and meaningful contribution to academia, government and industry.&nbsp;The outputs support resource exploration, hazard mapping, environmental management, and uncertainty attribution.&nbsp;This work encourages exploration investment, can reduce exploration risks and costs, helps expand search area whilst aiding target identification, and allows users to make well-informed decisions. Presented herein are some key findings from interpretations in potentially prospective, yet in some cases, underexplored regions from around Australia.&nbsp;</div> This abstract was submitted & presented to the 8th International Airborne Electromagnetics Workshop (AEM2023) (https://www.aseg.org.au/news/aem-2023)

  • <div><strong>Output Type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>Airborne electromagnetic surveys are widely used in Australia for mineral exploration, groundwater assessment (i.e. hydro-stratigraphy and water quality) and natural resource management (i.e. salinity assessment). In the last decade, regional surveys have been acquired covering approximately two thirds of the continent and resulting in a large volume of data to interpret. To address this challenge, we have developed a machine learning workflow to assist with the interpretation of AEM conductivity depth sections.</div><div>‘AEM assist’ is an open-source machine learning algorithm that allows the user to interpret AEM sections from drillhole observations and/or interpreted segments along the conductivity depth section. AEM assist finds predictive relationships between the training observations (drillhole and/or interpreted sections) and the conductivity value which also includes the first vertical derivative of the conductivity. Due to the non-uniqueness of the conductivity response, we have also built in a suite of supplementary covariates or features to help improve the model prediction. These features include terrain indices, gamma radiometric, surface weathering intensity, distance proxies (e.g., distance from rocks of a known age), climate indices, gravity, and magnetic derivatives. We have built the AEM assist into a national mapping framework to facilitate model interpretation and training anywhere in Australia. Although local training of sections is recommended the national framework provides an opportunity to train a model in one region and predict into another area given similar geological and landscape histories. The AEM assist has the potential to speed up the interpretation of AEM flightline sections with statistical models of interpretation uncertainty. AEM assist can be used to provide a first pass interpretation of a survey area that can later be revised by the domain expert. A feature of AEM assist is that it systematically integrates many datasets that would otherwise be difficult to do from traditional methods.</div><div><br></div><div><strong>Citation:</strong> Basak S., Wilford J., Wong S.C.T., Ley-Cooper Y. & Ray A., 2024. AEM assist - a national predictive machine learning framework for airborne electromagnetic interpretation and extrapolation. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts. Geoscience Australia, Canberra, https://doi.org/10.26186/149495</div>

  • <div>The Australian wide airborne electromagnetic programme AusAEM stands as the largest survey of its kind aiming to cover the Australian continent at approximately 20 km line-spacing. It is transforming resource exploration, unveiling potential minerals and groundwater.&nbsp;</div><div><br></div><div>The open-access nature of AusAEM data and the modelling codes developed around it encourages collaboration between governments, industry, and academia, fostering a community focused on advancing geoscientific research and exploration.</div><div><br></div><div>Overall, the AusAEM program is an asset that can drive economic growth, support sustainable resource management, and enhance scientific understanding of Australia’s geological landscape.</div><div><br></div>

  • <div><strong>Yathong, Forbes, Dubbo, and Coonabarabran Airborne Electromagnetic Survey Blocks.</strong></div><div><br></div><div>Geoscience Australia (GA), in collaboration with the Geological Survey of New South Wales (GNSW), conducted an airborne electromagnetic (AEM) survey from April to June 2023. The survey spanned from the north-eastern end of the Yathong-Ivanhoe Trough and extended across the Forbes, Dubbo, and Coonabarabran regions of New South Wales.&nbsp;A total of 15, 090-line kilometres of new AEM and magnetic geophysical data were acquired. This survey was entirely funded by&nbsp;GSNSW and GA managed acquisition, quality control, processing, modelling, and inversion of the AEM data.</div><div><br></div><div>The survey was flown by Xcalibur Aviation (Australia) Pty Ltd using a 6.25 Hz HELITEM® AEM system. The survey blocks were flown at 2500-metre nominal line spacings, with variations down to 100 metres in the Coonabarabran block. It was flown following East-West line directions. Xcalibur also processed the acquired data. This data package includes the acquisition and processing report, the final processed AEM data, and the results of the contractor's conductivity-depth estimates. The data package also contains the results and derived products from a 1D inversion by Geoscience Australia with its own inversion software.</div><div><br></div><div>The survey will be incorporated and become part of the national AusAEM airborne electromagnetic acquisition program, which aims to provide geophysical information to support investigations of the regional geology and groundwater.</div><div><br></div><div><strong>The data release package contains:</strong></div><div><br></div><div>1. A data release package <strong>summary PDF document</strong></div><div>2. The <strong>survey logistics and processing report</strong> and HELITEM® system specification files</div><div>3. <strong>Final processed point located line data</strong> in ASEG-GDF2 format for the five areas</div><div> -final processed dB/dt electromagnetic, magnetic and elevation data</div><div> -final processed B field electromagnetic, magnetic and elevation data</div><div><strong> <em>Conductivity estimates generated by Xcalibur’s inversion&nbsp;</em></strong></div><div> -point located conductivity-depth line data output from the inversion in ASEG-GDF2 format</div><div> -graphical (PDF) multiplot conductivity stacks and section profiles for each flight line</div><div> -graphical (PNG) conductivity sections for each line</div><div> -grids generated from the Xcalibur’s inversion in ER Mapper® format (layer conductivities slices, DTM, X & Z component for each of the 25 channels, time constants, TMI)</div><div>4.<strong> ESRI shape and KML</strong> (Google Earth) files for the flight lines and boundary</div><div>5<strong>. Conductivity estimates generated by Geoscience Australia's inversion&nbsp;</strong></div><div> -point located line data output from the inversion in ASEG-GDF2 format</div><div> -graphical (pdf) multiplot conductivity sections for each line</div><div> -georeferenced (PNG) conductivity sections (suitable for pseudo-3D display in a 2D GIS)</div><div> -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)</div><div> -Curtain image conductivity sections in log & liner colour stretch (suitable 3D display in GA’s EarthSci)</div><div><br></div><div><strong>Directory structure</strong></div><div>├── <strong>01_Report</strong></div><div>├── <strong>02_XCalibur_delivered</strong></div><div>│&nbsp;&nbsp; ├── * survey_block_Name</div><div>│ ├── cdi</div><div>│ │ ├── sections</div><div>│ │ └── stacks</div><div>│ ├── grids</div><div>│ │ ├── cnd</div><div>│ │ ├── dtm</div><div>│ │ ├── emxbf</div><div>│ │ ├── emxdb</div><div>│ │ ├── emxff</div><div>│ │ ├── emxzbf</div><div>│ │ ├── emzdb</div><div>│ │ ├── time_constant</div><div>│ │ └── tmi</div><div>│ ├── located_data</div><div>│ ├── maps</div><div>│ └── waveform</div><div>│&nbsp;&nbsp; </div><div>├── <strong>03_Shape&kml</strong></div><div>└── <strong>04_GA_Layer_Earth_inversion</strong></div><div> ├── * survey_block_Name</div><div> ├── GA_georef_sections</div><div> │ ├── linear-stretch</div><div> │ └── log-stretch</div><div> ├── GA_Inverted_conductivity_models</div><div> ├── GA_multiplots</div><div> └── GA_sgrids</div><div> </div> <b>Final Processed point located line data is available on request from clientservices@ga.gov.au - Quote eCat# 149118</b>

  • Exploring for the Future AusAEM Eastern Resources Corridor: 2021 Airborne Electromagnetic Survey: TEMPEST® airborne electromagnetic data and GALEI inversion conductivity estimates The accompanying data package, was released on 15 September August 2021 by Geoscience Australia (GA). The package contains AEM data from the AusAEM_20 East Resources Corridor survey, which was acquired across an area spanning from Bedourie in Queensland to Cape Jervis in South Australia, and from Tibooburra in New South Wales to Warrnambool in Victoria. The coverage is more than 600,000 square kilometres of south-eastern Australia. The regional survey was flown at a 20-kilometre nominal line spacing and entailed approximately 31,500 flight-line kilometres f geophysical data. The survey was flown in three phases, by Xcalibur Aviation (Australia) Pty. Ltd. (Xcalibur), formally CGG Aviation (Australia) Pty. Ltd. (CGG), under contract to Geoscience Australia, using the TEMPEST® airborne electromagnetic system. Xcalibur Aviation also processed the data. Geoscience Australia commissioned the Exploring for the Future AusAEM Eastern Resources Corridor survey as part of the Exploring for the Future (EFTF) program. The Exploring for the Future AusAEM program has been expanded with funding from the Geological Surveys of Western Australia and Queensland. Geoscience Australia acknowledges the valuable in-kind support from all Australian state and territory geological surveys in driving the new national AusAEM dataset. The program is designed to investigate the potential mineral, energy and groundwater resources of Australia driving the next generation of resource discoveries. GA managed the survey data acquisition, processing, contract, the quality control of the survey and generating two of the three inversion products included in the data package. The data release package comntains 1. A data release package summary PDF document. 2. The survey logistics and processing report and TEMPEST® system specification files 3. ESRI shape files for flight lines 4. Final processed point located line data in ASEG-GDF2 format 5. Conductivity estimates generated by Xcalibur, EMFlow conductivty-depth transform -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -Grids generated from CGG's inversion conductivty-depth transform in ER Mapper® format (layer conductivities) 6. Conductivity estimates generated by Geoscience Australia's inversion -point located line data output from the inversion in ASEG-GDF2 format -graphical (PDF) multiplot conductivity sections and profiles for each flight line -GoCAD™ S-Grid 3D objects (suitable for various 3D packages)

  • Building on newly acquired airborne electromagnetic and seismic reflection data during the Exploring for the Future (EFTF) program, Geoscience Australia (GA) generated a cover model across the Northern Territory and Queensland, in the Tennant Creek – Mount Isa (TISA) area (Figure 1; between 13.5 and 24.5⁰ S of latitude and 131.5 and 145⁰ E of longitude) (Bonnardot et al., 2020). The cover model provides depth estimates to chronostratigraphic layers, including: Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic. The depth estimates are based on the interpretation, compilation and integration of borehole, solid geology, reflection seismic, and airborne electromagnetic data, as well as depth to magnetic source estimates. These depth estimates in metres below the surface (relative to the Australian Height Datum) are consistently stored as points in the Estimates of Geophysical and Geological Surfaces (EGGS) database (Matthews et al., 2020). The data points compiled in this data package were extracted from the EGGS database. Preferred depth estimates were selected to ensure regional data consistency and aid the gridding. Two sets of cover depth surfaces (Bonnardot et al., 2020) were generated using different approaches to map megasequence boundaries associated with the Era unconformities: 1) Standard interpolation using a minimum-curvature gridding algorithm that provides minimum misfit where data points exist, and 2) Machine learning approach (Uncover-ML, Wilford et al., 2020) that allows to learn about relationships between datasets and therefore can provide better depth estimates in areas of sparse data points distribution and assess uncertainties. This data package includes the depth estimates data points compiled and used for gridding each surface, for the Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic (Figure 1). To provide indicative trends between the depth data points, regional interpolated depth surface grids are also provided for the Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic. The grids were generated with a standard interpolation algorithm, i.e. minimum-curvature interpolation method. Refined gridding method will be necessary to take into account uncertainties between the various datasets and variable distances between the points. These surfaces provide a framework to assess the depth and possible spatial extent of resources, including basin-hosted mineral resources, basement-hosted mineral resources, hydrocarbons and groundwater, as well as an input to economic models of the viability of potential resource development.