Critical Minerals
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
This web map service provides the locations and status, as at 30 June 2020, of Australian operating mines, mines under development, mines on care and maintenance and resource deposits associated with critical minerals. Developing mines are deposits where the project has a positive feasibility study, development has commenced or all approvals have been received. Mines under care and maintenance and resource deposits are based on known resource estimations and may produce critical minerals in the future.
-
This web map service provides the locations and status, as at 30 June 2020, of Australian operating mines, mines under development, mines on care and maintenance and resource deposits associated with critical minerals. Developing mines are deposits where the project has a positive feasibility study, development has commenced or all approvals have been received. Mines under care and maintenance and resource deposits are based on known resource estimations and may produce critical minerals in the future.
-
A review of mineral exploration trends, activities and discoveries in Australia in 2022.
-
This web service delivers datasets produced by the Critical Minerals Mapping Initiative (CMMI), a collaboration between Geoscience Australia (GA), the Geological Survey of Canada (GSC) and the United States Geological Survey (USGS). Data in this service includes geochemical analyses of over 7000 samples collected from or near mineral deposits from 60 countries, and mineral prospectivity models for clastic-dominated (Zn, Pb) and Mississippi Valley-type (Zn-Pb) deposits across Canada, the United States, and Australia.
-
<div>High purity quartz (HPQ) is the only naturally occurring and economically viable source for the production of silicon. Silicon is a critical mineral, and a key component in modern technologies such as semiconductors and photovoltaic cells. Critical minerals support the move towards a greater reliance on electrification, renewable energy sources and economic security. The global transition to net zero carbon emissions means there is a growing need for new discoveries of HPQ to supply the silicon production chain. High purity quartz deposits are identified in a multitude of geological settings, including pegmatites, hydrothermal veins, sedimentary accumulations and quartzite; however, deposits of sufficient volume and quality are rare. Quartz is abundant throughout Australia, but the exploration and discovery of HPQ occurrences is notably under-reported, making assessment of the HPQ potential in Australia extremely difficult. This paper presents a much-needed summary of the state of the HPQ industry, exploration and deposit styles in Australia. <b>Citation:</b> Jennings, A., Senior, A., Guerin, K., Main, P., & Walsh, J. (2024). A review of high-purity quartz for silicon production in Australia. <i>Australian Journal of Earth Sciences</i>, 1–13. https://doi.org/10.1080/08120099.2024.2362296
-
The Australian Mine Waste database contains mine waste features including mine waste name, waste type, waste status, storage type and geographical location. It also includes relational links to the associated mineral deposit, the associated deposit commodities as well as mineral deposit models modified from the Critical Mineral Mapping Initiative mineral deposit classification scheme (Hofstra et al., 2021). Where available, additional information has been included such as structure type, volume and rehabilitation status. This data has been compiled from published references and public information such as company reports. The resource is accessible via the Geoscience Australia Portal (https://portal.ga.gov.au/persona/minewaste)
-
The stabilities of uranyl-carbonate and uranyl-hydroxide aqueous complexes were experimentally determined at temperatures ranging from 25 to 125 °C using in situ UV–vis and Raman spectroscopic techniques. Combined with earlier determinations of the stability of chloride, sulfate, and hydroxide complexes at temperatures up to 250 °C, these data permit to create a consolidated dataset suitable for modeling of U(VI) mobilization in natural systems. The parameters of the Modified Ryzhenko-Bryzgalin and the Helgeson-Kirkham-Flowers (HKF) Equations of State (EoS) were derived based on this dataset and used for thermodynamic modeling different scenarios of U(VI) mobilization. These models suggest that at conditions relevant to natural systems, carbonate-mediated transport of U(VI) is likely suppressed by the high stability of solid UO2(OH)2 and Na2U2O7. In contrast, sulfate-mediated mobilization mechanisms are highly efficient at acidic and near-neutral pH conditions and can lead to effective hydrothermal mobilization of U(VI). <b>Citation:</b> A. Migdisov, E. Bastrakov, C. Alcorn, M. Reece, H. Boukhalfa, F.A. Capporuscio, C. Jove-Colon, A spectroscopic study of the stability of uranyl-carbonate complexes at 25–150 °C and re-visiting the data available for uranyl-chloride, uranyl-sulfate, and uranyl-hydroxide species, <i>Geochimica et Cosmochimica Acta</i>, 2024, ISSN 0016-7037, https://doi.org/10.1016/j.gca.2024.04.023.
-
<div>The Proterozoic alkaline and related igneous rocks of Australia is a surface geology compilation of alkaline and related igneous rocks of Proterozoic age in Australia. This dataset is one of five datasets, with compilations for Archean, Paleozoic, Mesozoic and Cenozoic alkaline and related igneous rocks already released.</div><div><br></div><div>Geological units are represented as polygon and point geometries and, are attributed with information that includes, but is not limited to, stratigraphic nomenclature and hierarchy, age, lithology, composition, proportion of alkaline rocks, body morphology, unit expression, emplacement type, presence of mantle xenoliths and diamonds, and primary data source. Source data for the geological unit polygons provided in Data Quality LINEAGE. Geological units are grouped into informal geographic “alkaline provinces”, which are represented as polygon geometries, and attributed with information similar to that provided for the geological units.</div>
-
<div>Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically though to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earth’s mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.</div><div><br></div><div>Accordingly, although alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere, as well as more directly to metallogenesis and mineralisation.</div><div><br></div><div>This contribution presents data on the distribution and geology of Australian alkaline and related rocks of Proterozoic age. Proterozoic alkaline and related rocks are primarily restricted to the western two-thirds of the Australia continent, congruent with the distribution of Proterozoic rocks more generally. Proterozoic alkaline rock units are most abundant in Western Australia and the Northern Territory, with minor occurrences in South Australia, and the western regions of Queensland, New South Wales and Tasmania.</div><div><br></div><div>The report and accompanying GIS document the distribution, age, lithology, mineralogy and other characteristics of these rocks (e.g., extrusive/intrusive, presence of mantle xenoliths, presence of diamonds), as well as references for data sources and descriptions. The report also reviews the nomenclature of alkaline rocks and classification procedures. GIS metadata are documented in the appendices. </div>
-
This web map service provides visualisations of datasets prepared for the Technology Investment Roadmap Data Portal. The service has been developed using various mineral deposit, mine location and industrial plant location datasets sourced from the Australia’s Identified Mineral Resources (2019), produced by Geoscience Australia (http://dx.doi.org/10.11636/1327-1466.2018)