From 1 - 10 / 23
  • Having techniques available for the accurate quantification of potential CO2 surface leaks from geological storage sites is critical for regulators, public assurance and for underpinning carbon pricing mechanisms. Currently, there are few options available that enable accurate CO2 quantification of potential leaks at the soil-atmosphere interface. Integrated soil flux measurements can be used to quantify CO2 emission rates from the soil and atmospheric techniques such as eddy covariance or Lagrangian stochastic modelling have been used with some success to quantify CO2 emissions into the atmosphere from simulated surface leaks. The error for all of these techniques for determining the emission rate is not less than 10%. A new technique to quantify CO2 emissions was trialled at the CO2CRC Ginninderra controlled release site in Canberra. The technique, termed atmospheric tomography, used an array of sampling sites and a Bayesian inversion technique to simultaneously solve for the location and magnitude of a simulated CO2 leak. The technique requires knowledge of concentration enhancement downwind of the source and the normalized, three-dimensional distribution (shape) of concentration in the dispersion plume. Continuous measurements of turbulent wind and temperature statistics were used to model the dispersion plume.

  • Geoscience Australia and CO2CRC have constructed a greenhouse gas controlled release reference facility to simulate surface emissions of CO2 (and other GHG gases) from an underground slotted horizontal well into the atmosphere under controlled conditions. The facility is located at an experimental agricultural station maintained by CSIRO Plant Industry at Ginninderra, Canberra. The design of the facility is modelled on the ZERT controlled release facility in Montana. The facility is equipped with a 2.5 tonne liquid CO2 storage vessel, vaporiser and mass flow controller unit with a capacity for 6 individual metered CO2 gas streams (up to 600 kg/d capacity). Injection of CO2 into soil is via a shallow (2m depth) underground 120m horizontally drilled slotted HDPE pipe. This is equipped with a packer system to partition the well into six CO2 injection chambers. The site is characterised by the presence of deep red and yellow podsolic soils with the subsoil containing mainly kaolinite and subdominant illite. Injection is above the water table. The choice of well orientation based upon the effects of various factors such as topography, wind direction, soil properties and ground water depth will be discussed. An above ground release experiment was conducted from July - October 2010 leading to the development of an atmospheric tomography technique for quantifying and locating CO2 emissions1. This technique will be applied to the first sub-surface experiment held in January-March 2012 in addition to soil flux surveys, microbiological surveys, and tracer studies. An overview of monitoring experiments conducted during the subsurface release and preliminary results will be presented. Additional CO2 releases are planned for late 2012 and 2013. Abstract for "11th Annual Conference on Carbon Capture Utilization & Sequestration" April 30 - May 3, 2012, Pittsburgh, Pennsylvania

  • A short animation of an atmospheric simulation of methane emissions from a coal mine (produced using TAPM) compared to actual methane concentrations detected by the Atmospheric Monitoring Station, Arcturus in Central Queensland. It illustrates the effectiveness of both the detection and simulation techniques in the monitoring of atmospheric methane emissions. The animation shows a moving trace of both the simulated and actual recorded emissions data, along with windspeed and direction indicators. Some data provided by CSIRO Marine and Atmospheric Research.

  • The aim of the NPE10 exercise is the continuation of the multi - technology approach started with NPE09. For NPE10, a simulated release of radionuclides was the trigger for the scenario in which an REB-listed seismo-acoustic event with ML between 3.0 and 4.8 was the source. Assumptions made were: A single seismo-acoustic signal-generating underground detonation event with continuous leak of noble gas, radionuclide detections only from simulated release. Using atmospheric transport modelling the IDC identified 48 candidate seismo-acoustic events from data fusion of the seismo-acoustic REBs with radionuclide detections. We were able to reduce the number of candidate seismo-acoustic point sources from 48 to 2 by firstly rejecting events that did not appear consistently in the data fusion bulletins; secondly, reducing the time-window under consideration through analysis of xenon isotope ratios; and thirdly, by clustering the remaining earthquakes and aftershocks and applying forward tracking to these (clustered) candidate events, using the Hy-split and ARGOS modelling tools. The two candidate events that were not screened by RN analysis were Wyoming REB events 6797924 (23-Oct) and 6797555 (24-Oct). Event 6797555 was identified as an earthquake on the basis of depth (identification of candidate depth phases at five teleseismic stations); regional Pn/Lg and mb:Ms - all indicating an earthquake source. Event 6797924, however, was not screened and from our analysis would constitute a candidate event for an On-Site Inspection under the Treaty.

  • This folder contains the work related to Climate Future Tasmania project including hazard, risk calculation, standalone tool, management and reports etc.

  • Geoscience Australia and CO2CRC have constructed a greenhouse gas controlled release facility to simulate surface emissions of CO2 (and other greenhouse gases) from the soil into the atmosphere under controlled conditions. The facility is located at an experimental agricultural station maintained by CSIRO Plant Industry at Ginninderra, Canberra. The design of the facility is modelled on the ZERT controlled release facility in Montana. The facility is equipped with a 2.5 tonne liquid CO2 storage vessel, vaporiser and mass flow controller unit with a capacity for 6 individual metered CO2 gas streams (up to 600 kg/d capacity in total). Injection of CO2 into the soil is via a 120m long slotted HDPE pipe installed horizontally 2m underground. This is equipped with a packer system to partition the well into six CO2 injection chambers. The site is characterised by the presence of deep red and yellow podsolic soils with the subsoil containing mainly kaolinite and subdominant illite. Injection is above the water table. The choice of well orientation based upon the effects of various factors such as topography, wind direction, soil properties and ground water depth will be discussed. An above ground release experiment was conducted from July - October 2010 leading to the development of an atmospheric tomography technique for quantifying and locating CO2 emissions1. An overview of monitoring experiments conducted during the first subsurface release (January-March 2012), including application of the atmospheric tomography technique, soil flux surveys, microbiological surveys, and tracer studies, will be presented. Additional CO2 release experiments are planned for late 2012 and 2013. Poster presented at 11th Annual Conference on Carbon Capture Utilization & Sequestration, April 30 - May 3, 2012, Pittsburgh, Pennsylvania

  • Nadir BRDF Adjusted Reflectance correction standardizes Landsat data to enable image intercomparison. The method accounts for within-scene sun, view and sensor geometry variations by using coupled physics-based atmospheric and BRDF models. The BRDF shape functions derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data with the MODerate resolution atmospheric TRANsmission version 5 (MODTRAN) radiative transfer model.

  • 11-5413 The Probabilistic Volcanic Ash - Hazard Map movie describes how you construct a probabilistic hazard map for volcanic ash, using an example scenario from GA's volcanic ash modelling work in West Java, Indonesia. The target audience is other govt. agencies both national and international, and the general public. The 3.3 minute movie uses 3D Max animations and 2D affects, has narration and production music. The narration will also be done in Bahasa Indonesian, at a later date.

  • Geoscience Australia and the CO2CRC have constructed a greenhouse gas controlled release facility at an experimental agricultural station maintained by CSIRO Plant Industry at Ginninderra, Canberra. The facility is designed to simulate surface emissions of CO2 (and other greenhouse gases) from the soil into the atmosphere. CO2 is injected into the soil is via a 120m long slotted HDPE pipe installed horizontally 2m underground. This is fitted with a straddle packer system to partition the well into six CO2 injection chambers with each chamber connected to its own CO2 injection line. CO2 was injected into 5 of the chambers during the first sub-surface release experiment (March - May 2012) and the total daily injection rate was 100 kg/d. A krypton tracer was injected into one of the 5 chambers at a rate of 10 mL/min. Monitoring methods trialled at the site include eddy covariance, atmospheric tomography using a wireless networked array of solar powered CO2 stations, soil flux, soil gas, frequency-domain electromagnetics (FDEM), soil community DNA analysis, and krypton tracer studies (soil gas and air). A summary of the findings will be presented. Paper presented at the 2012 CO2CRC Research Symposium, Sunshine Beach, 27-29 November 2012.

  • Earth Observations from Space describes a range of approaches that observe and measure Earth surface properties from space-based platforms. Earth Observations from Space data is used widely and to great advantage in Australia by numerous federal and state government agencies, research institutions, and the private sector, and have particular value in a large, sparsely populated country that needs to monitor a long coastline and a wide range of natural disasters. Australias involvement in international agreements that require recording, monitoring and reporting on environmental change also necessitates the use of Earth Observations from Space data.