From 1 - 10 / 34
  • The Busselton 2008 LiDAR data was captured over the Busselton region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.

  • The 2009 National Elevation Audit is a series of maps illustrating the areas where elevation data has been captured or will be completed until the end of 2009 and their relative vertical accuracy.

  • A test site for airborne gravity (AG) systems has been established at Kauring, approximately 100 km east of Perth, Western Australia. The site was chosen using a range of criteria that included being within 200 km of Jandakot Airport in Perth where most of the airborne systems would be based at one time or another when operating in Australia, being free of low level flight restrictions, having minimal human infrastructure in the central 20 by 20 km area, and the presence of gentle to rolling terrain rather than deeply incised topography or an extensive flat plain with very low relief. In anticipation of catering for airborne gravity gradiometer (AGG) systems, the site was required to have a gravity gradient feature with clear response in the wavelength range of 100 m to 2 km in a 5 by 5 km core region. In addition to catering for AGG systems, the site may also be used in the future to demonstrate and compare various airborne magnetic systems (TMI, vector, and gradient tensor systems) and digital terrain mapping systems.

  • The Swan Coast hydrologically enforced digital elevation model (HDEM) was produced in 2010 as part of the Urban DEM project managed by the CRC for Spatial Information and Geoscience Australia. The HDEM was created from a combination of the following surveys; Perth, Peel, Harvey, Bunbury and Busselton LiDAR The Swan Coast 2008 LiDAR data was captured over the Swan Coast region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The HDEM was produced by SKM using the ANUDEM program. The HDEM ensures that primary stream/channel flow, and water flow across the land surface are accurately represented. The hydrologically enforced HDEM depicts water bodies as being flat, and water courses depict consistent downward flow of water unimpeded by vegetation or man-made structures such as bridges and major culverts. Drainage enforcement was limited to watercourse lines depicted on 1:25,000 topographic mapping and to the intersection of the water course layer and transport layer. For the purposes of inundation modelling, inundation contours have been developed using the HDEM. The inundation extents were extracted at 0.2m intervals below 2m AHD and 1m intervals up to 10m. The inundation contours are available as polylines. The inundation contours have also been flagged as to whether the area connects directly to the sea. he data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing.

  • The Bunbury 2008 LiDAR data was captured over the Bunbury region during February, 2008. The data was acquired by AAMHatch (now AAMGroup) and Fugro Spatial Solutions through a number of separate missions as part of the larger Swan Coast LiDAR Survey that covers the regions of Perth, Peel, Harvey, Bunbury and Busselton. The project was funded by Department of Water, WA for the purposes of coastal inundation modelling and a range of local and regional planning. The data are made available under licence for use by Commonwealth, State and Local Government. The data was captured with point density of 1 point per square metre and overall vertical accuracy has been confirmed at <15cm (68% confidence). The data are available as a number of products including mass point files (ASCII, LAS) and ESRI GRID files with 1m grid spacing. A 2m posting hydrologically enforced digital elevation model (HDEM) and inundation contours has also been derived for low lying coastal areas.

  • National Elevation Data Audit is a report outlining all elevation data available across all Australian jurisdictions which was identified by the Intergovernment Committee on Surveying and Mapping's (ICSM) Permanent Committee on Topographic Information (PCTI).

  • The 1 second SRTM derived DEM-H Version 1.0 is a 1 arc second (~30 m) gridded digital elevation model (DEM) that has been hydrologically conditioned and drainage enforced. The DEM-H captures flow paths based on SRTM elevations and mapped stream lines, and supports delineation of catchments and related hydrological attributes. The dataset was derived from the 1 second smoothed Digital Elevation Model (DEM-S; ANZCW0703014016) by enforcing hydrological connectivity with the ANUDEM software, using selected AusHydro V1.6 (February 2010) 1:250,000 scale watercourse lines (ANZCW0503900101) and lines derived from DEM-S to define the watercourses. The drainage enforcement has produced a consistent representation of hydrological connectivity with some elevation artefacts resulting from the drainage enforcement. A full description of the methods is in preparation (Dowling et al., in prep). This product is the last of the Version 1.0 series derived from the 1 second SRTM (DSM, DEM, DEM-S and DEM-H) and provides a DEM suitable for use in hydrological analysis such as catchment definition and flow routing.

  • An audit of high resolution elevation data capture in relation to densely populated areas was completed to: provide an overview of the status of high resolution elevation data acquisition around the coastal zone; and highlight areas for potential acquisition or further processing based on priorities identified through consultation with Commonwealth and State jurisdictions.

  • Data was collected by selecting the highest point(s) in each geographical area of 30 minutes of latitude by 30 minutes of longitude. Elevations are recorded in feet and metres (always rounded up). Information is derived from 1:1 Million scale World Aeronautical Charts. Note: This is not regularly gridded data.

  • Map is an image of the seafloor and land topograhpy with the seafloor data between latitudes 64 degrees North and 72 degrees South by Smith and Sandwell (1997) with more information from W.H.F Smith and D.T. Sandwell, Global Seafloor Topography from Satellite Altimetry and Ship Depth Soundings, Science, v.277, p. 1956-1962, 26 September 1997. This has been combined with land topography from the Global Land One-km Base Elevation (GLOBE) Project. This image has been modified in ER Mapper to increase the depth perception by chaning the sun angle.