vegetation
Type of resources
Keywords
Publication year
Service types
Scale
Topics
-
National vegetation cover derived from: - Values 1, 7, and 8 from the 2007 forests dataset (BRS) - Values 2 and 3 from the NVIS 3.1 dataset (ERIN) - Values 1-6 and 9-11 from the catchment scale land use dataset (as at April 2009, BRS) - Any remaining no data areas filled from the Integrated Vegetation 2008 dataset (BRS) The datasets were resampled to 100 metre grids and projected to Albers equal area if required. The integrated vegetation grid was derived using a conditional statement weighing each input grid in the order listed above. Bureau of Rural Sciences, Canberra are custodians of the dataset.
-
Geoscience Australia (GA) was invited by Murray-Darling Basin Authority (MDBA) in 2010 to participate in an evaluation of the Intermap IFSAR (Interferometric Synthetic Aperture RADAR) data that was acquired as part of the Murray-Darling Basin Information Infrastructure Project Stage 1 (MDBIIP1) in 2009. This evaluation will feed into the business case for Stage 2 of the project. As part of the evaluation GA undertook the following: 1. A comparison of the IFSAR Digital Surface Model (DSM) and Digital Terrain Model (DTM) with a recent LiDAR acquisition, covering approximately 9000Km2 of the Lower Darling Region. It focused on assessment of the data over various land cover and terrain types and identified opportunities and issues with integrating IFSAR with LiDAR. 2. A comparison of the IFSAR Vegetation Canopy Surface (DSM minus DTM) with the Lower Darling LiDAR Canopy Elevation Model (CEM). 3. A comparison between currently mapped man-made and natural water bodies over the Murray-Darling Basin with the IFSAR derived products (water mask). 4. Application of the National Catchment Boundaries (NCBs) methodology to the IFSAR data and comparison with the delineated watersheds from PBS&J (Intermap's sub-contractor). This report outlines the findings of this evaluation based on the 4 items above MDBA requested.
-
The Sustainable Management of Coastal Groundwater Resources Project was co-funded by the Raising National Water Standards Program, which supports the implementation of the National Water Initiative Program. The project was led by GHD Hassall, in consultation with Kempsey Shire Council, Geoscience Australia, NSW Department of Environment, Climate Change and Water, and Ecoseal Developments Pty. Ltd. The project aimed to improve the management of groundwater in coastal dune aquifers, undertaking a case study of the Hat Head National Park region on the Mid North Coast of New South Wales. Due to increasing pressures on groundwater resources from expanding urbanisation and tourism in this region, the sustainable management of the existing groundwater resources is of vital importance. There are many potential risks associated with extraction of groundwater resources including acidification of soils, seawater intrusion and increased salinity levels, and detrimental impacts on groundwater dependent ecosystems (GDEs). This final report documents all of the work undertaken by Geoscience Australia relating to Groundwater Dependent Ecosystems, or more specifically groundwater dependent terrestrial vegetation. Groundwater dependent ecosystems (GDEs) are naturally occurring ecosystems that require access to groundwater to meet all or some of their water requirements so as to maintain their communities of plants and animals, ecological processes and ecosystems services. Often the natural water regime of GDEs will comprise one or more of groundwater, surface water and soil moisture.
-
Background Land cover is the observed physical cover on the Earth's surface including trees, shrubs, grasses, soils, exposed rocks, water bodies, plantations, crops and built structures. A consistent, Australia-wide land cover product helps understanding of how the different parts of the environment change and inter-relate. Earth observation data recorded over a period of time firstly allows the observation of the state of land cover at a specific time and secondly the way that land cover changes by comparison between times. What this product offers DEA Land Cover provides annual land cover classifications for Australia using the Food and Agriculture Organisation Land Cover Classification System taxonomy Version 2 (Di Gregorio and Jansen, 1998; 2005). DEA Land Cover divides the landscape into six base land cover types, which are then further detailed in sub-classes. The structure of base and sub-classes is as follows: - Cultivated Terrestrial Vegetation - percentage of cover - life form (herbaceous only) - Natural Terrestrial Vegetation - percentage of cover - life form (herbaceous only) - Natural Aquatic Vegetation - percentage of cover - life form (herbaceous only) - water seasonality - Artificial Surfaces - Natural Bare - percentage of bare - Aquatic - water persistence - intertidal area
-
Identification of groundwater-dependent terrestrial vegetation, and assessment of the relative importance of different water sources to vegetation dynamics, typically requires detailed ecophysiological studies over a number of seasons or years. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Quicker, more regional approaches to mapping groundwater-dependent vegetation have consequently evolved with technological advancements in remote sensing techniques. These approaches however often fail to incorporate sub-surface hydrogeological processes in their interpretation of groundwater dependence. This study, undertaken in the semi-arid Darling River Floodplain in NSW, Australia, innovatively combines Landsat Normalised Difference Vegetation Index (NDVI) time series data with hydrogeological, hydrogeochemical and hydrogeophysical data to assess the relative importance of hydrological processes and groundwater characteristics. Central to the approach is the use of airborne electromagnetics which provides a 3-dimensional context to otherwise point-based borehole data. This approach has resulted in an improved understanding of vegetation dynamics including the spatial distribution of vegetation utilising groundwater, timing and duration of groundwater use, and response to different hydrologic regimes (e.g. rainfall, lateral bank recharge, and overbank flooding). In particular, the study has established that the deeper (>25m), semi-confined aquifer is only rarely important to vegetation dynamics, with the shallow unconfined aquifer and river flush zones being of greater importance. These findings are being used to assess the suitability of proposed groundwater-development schemes in the study area, and have implications for riparian vegetation management more broadly.
-
Shows the vegetation of Australia in the mid-1980s. Areas over 30,000 hectares are shown, plus small areas of significant vegetation such as rainforests and croplands. Attribute information includes: growth form of tallest and lower stratum, foliage cover of tallest stratum and dominant floristic types. Data are captured from 1:5 million source material, suitable for GIS applications. The source map is also available for purchase. Product Specifications: Coverage: Australia Currency: Compiled mid-1980s Coordinates: Geographical Datum: AGD66 Projection: Simple Conic on two standard parallels 18S and 36S (printed map only) Format: ArcInfo Export, ArcView Shapefile and MapInfo mid/mif (data only) Medium: Printed map - Paper (flat and folded); Free online and CD-ROM (fee applies) Forward Program: Under review.
-
Identification of groundwater-dependent (terrestrial) vegetation, and assessment of the relative importance of different water sources to vegetation dynamics commonly involves detailed ecophysiological studies over a number of seasons or years. However, even when groundwater dependence can be quantified, results are often difficult to upscale beyond the plot scale. Consequently, quicker, more regional mapping approaches have been developed. These new approaches utilise advances in computation geoscience, and remote sensing and airborne geophysical technologies. The Darling River Floodplain, western New South Wales, Australia, was selected as the case study area. This semi-arid landscape is subject to long periods of drought followed by extensive flooding. Despite the episodic availability of surface water resources, two native Eucalyptus species, E. camaldulensis (River Red Gum) and E. largiflorens (Black Box) continue to survive in these conditions. Both species have recognised adaptations, include the ability to utilise groundwater resources at depth. A remote sensing methodology was developed to identify those communities potentially dependent on groundwater resources during the recent millennium drought in Australia.
-
In many areas of the world, vegetation dynamics in semi-arid floodplain environments have been seriously impacted by increased river regulation and groundwater use. In this study, the condition of two of Australia's iconic riparian and floodplain vegetation elements, River Red Gums (Eucalyptus camaldulensis) and Black Box (E. largiflorens) are examined in relation to differing hydraulic regimes. With increases in regulation along Murray-Darling Basin rivers, flood volume, seasonality and frequency have changed which has in turn affected the condition and distribution of vegetation. Rather than undertaking a field based assessment of tree health in response to current water regimes, this paper documents a remote sensing study that assessed historic response of vegetation to a range of different climatic and hydraulic regimes at a floodplain scale. This methodology innovatively combined high-resolution vegetation structural mapping derived from LiDAR data (Canopy Digital Elevation Model and Foliage Projected Cover) with 23 years of Landsat time-series data. Statistical summaries of Normalised Difference Vegetation Index values were generated for each spatially continuous vegetation structural class (e.g. stand of closed forest) for each Landsat scene. Consequently long-term temporal change in vegetation condition was assessed against different water regimes (drought, local rainfall, river bank full, overbank flow, and lake filling). Results provide insight into vegetation response to different water sources and overall water availability. Additionally, some inferences can be made about lag times associated with vegetation response and the duration of the response once water availability has declined (e.g. after floodwaters recede). This methodology should enable water managers to better assess the adequacy of environmental flows.
-
How much easier it would be to map and quantify the key elements of the hydrological cycle if the Earth's surface was transparent! Unfortunately, this is not the case and it is this very inability to penetrate to sufficient depths to map and quantify groundwater components of the hydrological cycle that currently necessitates the integration of satellite- airborne- and ground observations. In Australia, important advances have been made in the last 3 years in quantifying key elements of the hydrological cycle. This has been achieved in part through the increased use of Landsat, MODIS, SPOT, hyperspectral, NOAA and LiDAR datasets to improve the mapping and quantification of surface water, evapotranspiration, soil moisture and recharge and discharge. However, significant limitations remain in using satellite-based platforms alone for quantifying catchment water balances, surface-groundwater interactions, groundwater resource estimation and managing groundwater dependent ecosystems. Increasingly, the need to map the key elements of the hydrological cycle to calibrate water balance models and for environmental management, is leading to the development of more holistic systems approaches, involving the integration of satellite-, airborne and ground-based techniques and measurements. One example is in the River Murray Corridor (RMC) in SE Australia, where previous attempts to assess the water needs for iconic floodplain wetland ecosystems, based largely on satellite-based measurements, did not adequately take into account sub-surface soil conditions and groundwater quality and processes. In floodplain environments such as the River Murray Floodplain, the factors that govern tree health are invariably complex, and include a wide range of biophysical and biogeochemical factors.
-
Two vegetation maps (sold separately) - Natural Vegetation (1788) and Post-European Vegetation (1988) reconstruct Australia`s vegetation in the 1780s and the mid-1980s. Areas over 30,000 hectares are shown, plus small areas of significant vegetation such as rainforest. Attribute information includes: growth form of tallest and lower stratum, foliage cover of tallest stratum and dominant floristic types. Data was captured from 1:5 million source material. These maps are also available as free vector GIS data. Product Specifications Coverage: Australia Currency: Compiled mid-1980s Coordinates: Geographical Datum: AGD66 Projection: Simple Conic on two standard parallels 18S and 36S