From 1 - 10 / 52
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • The North Australian Zinc Belt is the largest zinc–lead province in the world, containing 3 of the 10 largest individual deposits known. Despite this pedigree, exploration in this province during the past two decades has not been particularly successful, yielding only one significant deposit (Teena). One of the most important aspects of exploration is to choose regions or provinces that have greatest potential for discovery. Here, we present results from zinc belts in northern Australia and North America, which highlight previously unused datasets for area selection and targeting at the craton to district scale. Lead isotope mapping using analyses of mineralised material has identified gradients in μ (238U/204Pb) that coincide closely with many major deposits. Locations of these deposits also coincide with a gradient in the depth of the lithosphere–asthenosphere boundary determined from calibrated surface wave tomography models converted to temperature. In Australia, gradients in upward-continued gravity anomalies and a step in Moho depth corresponding to a pre-existing major crustal boundary are also observed. The change from thicker to thinner lithosphere is interpreted to localise prospective basins for zinc–lead and copper–cobalt mineralisation, and to control the gradient in lead isotope and other geophysical data. <b>Citation:</b> Huston, D.L., Champion, D.C., Czarnota, K., Hutchens, M., Hoggard, M., Ware, B., Richards, F., Tessalina, S., Gibson, G.M. and Carr, G., 2020. Lithospheric-scale controls on zinc–lead–silver deposits of the North Australian Zinc Belt: evidence from isotopic and geophysical data. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • Comprises a national satellite imagery mosaic and derived information products produced by a collaboration of CSIRO, Geoscience Australia (GA) and State and Territory Surveys, and several additional national and international collaborators. Mineral products were derived using a validated mosaic of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. <b>Value: </b>The data are used to understand distributions of and changes in surface materials and assessment of environmental, agricultural and resource potential. <b>Scope: </b>This dataset covers the continent with the intent to provide the best quality mosaic from 10+ year archive of scenes across Australia (i.e., lowest cloud/vegetation cover, high sun angle etc)

  • 60 second video announcing Digital Earth Australia - a world first analysis platform for satellite imagery and other Earth observations.

  • Background These are the statistics generated from the DEA Water Observations (Water Observations from Space) suite of products, which gives summaries of how often surface water was observed by the Landsat satellites for various periods (per year, per season and for the period from 1986 to the present). Water Observations Statistics (WO-STATS) provides information on how many times the Landsat satellites were able to clearly see an area, how many times those observations were wet, and what that means for the percentage of time that water was observed in the landscape. What this product offers Each dataset in this product consists of the following datasets: - Clear Count: how many times an area could be clearly seen (i.e. not affected by clouds, shadows or other satellite observation problems) - Wet Count: how many times water was detected inobservations that were clear - Water Summary: what percentage of clear observations were detected as wet (i.e. the ratio of wet to clear as a percentage) As no confidence filtering is applied to this product, it is affected by noise where misclassifications have occurred in the input water classifications, and can be difficult to interpret on its own. The confidence layer and filtered summary are contained in the Water Observations Filtered Statistics (WO-FILT-STATS) product, which provides a noise-reduced view of the all-of-time water summary. WO-STATS is available in multiple forms, depending on the length of time over which the statistics are calculated. At present the following are available: WO-STATS:statistics calculated from the full depth of time series (1986 to present) WO-STATS-ANNUAL:statistics calculated from each calendar year (1986 to present) WO-STATS-NOV-MAR:statistics calculated yearly from November to March (1986 to present) WO-STATS-APR-OCT:statistics calculated yearly from April to October (1986 to present)

  • <div>These videos provide tutorials on how to use the Geoscience Australia Data portal in the classroom. They include a guide for basic navigation, how to load 2D map data sets (elevation, surface geology and critical minerals) as well as accessing a 3D data model (earthquakes).&nbsp;Additionally, they demonstrate how to directly compare multiple data and how to share collated data through a shareable link.</div><div>Videos included:</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Introduction to using the Geoscience Australia Data Portal (2:15)</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;How to access elevation, surface geology and critical minerals data in the Geoscience Australia Data Portal (4:26)</div><div>- How to view the global distribution of earthquakes using the Geoscience Australia Data Portal (2:51)</div><div><br></div><div>These videos are suitable for use by secondary students and adults.</div>

  • This report presents key results from the Upper Burdekin Groundwater Project conducted as part of Exploring for the Future (EFTF)—an eight year Australian Government funded geoscience data and information acquisition program. The first four years of the Program (2016–20) aimed to better understand the potential mineral, energy and groundwater resources in northern Australia. The Upper Burdekin Groundwater Project focused on the McBride Basalt Province (MBP) and Nulla Basalt Province (NBP) in the Upper Burdekin region of North Queensland. It was undertaken as a collaborative study between Geoscience Australia and the Queensland Government. This document reports the key findings of the project, as a synthesis of the hydrogeological investigation project and includes maps and figures to display the results.

  • The WOfS summary statistic represents, for each pixel, the percentage of time that water is detected at the surface relative to the total number of clear observations. Due to the 25-m by 25-m pixel size of Landsat data, only features greater than 25m by 25m are detected and only features covering multiple pixels are consistently detected. The WOfS summary statistic was produced over the McBride and Nulla Basalt provinces for the entire period of available data (1987 to 2018). Pixels were polygonised and classified in order to visually enhance key data in the imagery. Areas depicted in the dataset have been exaggerated to enable visibility.

  • Up to date information about the extent and location of surface water provides all Australians with a common understanding of this valuable and increasingly scarce resource. Digital Earth Australia (DEA) Waterbodies shows the wet surface area of waterbodies as estimated from satellites. It does not show depth, volume, purpose of the waterbody, nor the source of the water. DEA Waterbodies uses Geoscience Australia’s archive of over 30 years of Landsat satellite imagery to identify where over 300,000 waterbodies are in the Australian landscape and tells us the wet surface area within those waterbodies. It supports users to understand and manage water across Australia. For example, users can gain insights into the severity and spatial distribution of drought or identify potential water sources for aerial firefighting. The tool uses a water classification for every available Landsat satellite image and maps the locations of waterbodies across Australia. It provides a timeseries of wet surface area for waterbodies that are present more than 10% of the time and are larger than 2700m2 (3 Landsat pixels). The tool indicates changes in the wet surface area of waterbodies. This can be used to identify when waterbodies are increasing or decreasing in wet surface area. More information on using this dataset can be accessed on the DEA Knowledge Hub at <a href="https://docs.dea.ga.gov.au/data/product/dea-waterbodies-landsat/?tab=overview">https://docs.dea.ga.gov.au/data/product/dea-waterbodies-landsat/?tab=overview</a>. Refer to the research paper Krause et al. 2021 for additional details: <a href="https://doi.org/10.3390/rs13081437">https://doi.org/10.3390/rs13081437</a> The update from version 2 to version 3.0 of the DEA Waterbodies product and service was created through a collaboration between Geoscience Australia, the National Aerial Firefighting Centre, Natural Hazards Research Australia, and FrontierSI to make the product more useful in hazard applications. Geoscience Australia, the National Aerial Firefighting Centre, Natural Hazards Research Australia, and FrontierSI advise that the information published by this service comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, FrontierSI, Geoscience Australia, the National Aerial Firefighting Centre and Natural Hazards Research Australia (including its employees and consultants) are excluded from all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it.

  • <div>The aim of the Interferometric Synthetic Aperture Radar (InSAR) project is to develop an end-to-end, fully automated InSAR processing system that will take raw SAR data from any sensor and produce time-series maps of surface deformation/movement.</div><div>Surface deformation maps are important products to help define the national geodetic reference frame by augmenting the geodetic data obtained from sparse ground networks, in addition to identifying regions with elevated natural hazard risk.</div>