From 1 - 10 / 55
  • The Surface Hydrology Points (Regional) dataset provides a set of related features classes to be used as the basis of the production of consistent hydrological information. This dataset contains a geometric representation of major hydrographic point elements - both natural and artificial. This dataset is the best available data supplied by Jurisdictions and aggregated by Geoscience Australia it is intended for defining hydrological features.

  • <div>The aim of the Interferometric Synthetic Aperture Radar (InSAR) project is to develop an end-to-end, fully automated InSAR processing system that will take raw SAR data from any sensor and produce time-series maps of surface deformation/movement.</div><div>Surface deformation maps are important products to help define the national geodetic reference frame by augmenting the geodetic data obtained from sparse ground networks, in addition to identifying regions with elevated natural hazard risk.</div>

  • <b>BACKGROUND</b> <p> <p>The United States Geological Survey's (USGS) Landsat satellite program has been capturing images of the Australian continent for more than 30 years. This data is highly useful for land and coastal mapping studies. <p>In particular, the light reflected from the Earth’s surface (surface reflectance) is important for monitoring environmental resources – such as agricultural production and mining activities – over time. <p>We need to make accurate comparisons of imagery acquired at different times, seasons and geographic locations. However, inconsistencies can arise due to variations in atmospheric conditions, sun position, sensor view angle, surface slope and surface aspect. These need to be reduced or removed to ensure the data is consistent and can be compared over time. <p>&nbsp</p> <b>WHAT THIS PRODUCT OFFERS</b> <p> <p>GA Landsat 5 TM Analysis Ready Data Collection 3 takes Landsat 5 Thematic Mapper (TM) imagery captured over the Australian continent and corrects for inconsistencies across land and coastal fringes. The result is accurate and standardised surface reflectance data, which is instrumental in identifying and quantifying environmental change. <p> <p>The TM instrument is an advanced, multispectral scanning, Earth resources sensor which is designed to categorise the Earth's surface. It is particularly useful for agricultural applications and identification of land use. <p> <p>This product is a single, cohesive Analysis Ready Data (ARD) package, which allows you to analyse surface reflectance data as is, without the need to apply additional corrections. <p> <p>It contains three sub-products that provide corrections or attribution information: <p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;1) GA Landsat 5 TM NBAR Collection 3 <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2) GA Landsat 5 TM NBART Collection 3 <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;3) GA Landsat 5 TM OA Collection 3 <p> <p>The resolution is a 30 m grid based on the USGS Landsat Collection 1 archive.

  • 60 second video announcing Digital Earth Australia - a world first analysis platform for satellite imagery and other Earth observations.

  • This service provides Australian surface hydrology, including natural and man-made features such as water courses (including directional flow paths), lakes, dams and other water bodies. The information was derived from the Surface Hydrology database, with a nominal scale of 1:250,000. The service contains layer scale dependencies.

  • This specification describes the aggregation of jurisdictional data that is maintained by Geoscience Australia. Currently this data is made up of a mixture of scale ranging from 1:25,000 to 1:250,000 across the continent.

  • This service provides access to hydrochemistry data (groundwater and surface water analyses) obtained from water samples collected from Australian water bores or field sites.

  • <b>BACKGROUND</b> <p> <p>The United States Geological Survey's (USGS) Landsat satellite program has been capturing images of the Australian continent for more than 30 years. This data is highly useful for land and coastal mapping studies. <p>In particular, the light reflected from the Earth’s surface (surface reflectance) is important for monitoring environmental resources – such as agricultural production and mining activities – over time. <p>We need to make accurate comparisons of imagery acquired at different times, seasons and geographic locations. However, inconsistencies can arise due to variations in atmospheric conditions, sun position, sensor view angle, surface slope and surface aspect. These need to be reduced or removed to ensure the data is consistent and can be compared over time. <p>&nbsp</p> <b>WHAT THIS PRODUCT OFFERS</b> <p> <p>GA Landsat 8 OLI/TIRS Analysis Ready Data Collection 3 takes Landsat 8 imagery captured over the Australian continent and corrects for inconsistencies across land and coastal fringes. The result is accurate and standardised surface reflectance data, which is instrumental in identifying and quantifying environmental change. <p> <p>The imagery is captured using the Operational Land Imager (OLI) and Thermal Infra-Red Scanner (TIRS) sensors aboard Landsat 8. <p> <p>This product is a single, cohesive Analysis Ready Data (ARD) package, which allows you to analyse surface reflectance data as is, without the need to apply additional corrections. <p> <p>It contains three sub-products that provide corrections or attribution information: <p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;1) GA Landsat 8 OLI/TIRS NBAR Collection 3 <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2) GA Landsat 8 OLI/TIRS NBART Collection 3 <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;3) GA Landsat 8 OLI/TIRS OA Collection 3 <p> <p>The resolution is a 30 m grid based on the USGS Landsat Collection 1 archive.

  • The North Australian Zinc Belt is the largest zinc–lead province in the world, containing 3 of the 10 largest individual deposits known. Despite this pedigree, exploration in this province during the past two decades has not been particularly successful, yielding only one significant deposit (Teena). One of the most important aspects of exploration is to choose regions or provinces that have greatest potential for discovery. Here, we present results from zinc belts in northern Australia and North America, which highlight previously unused datasets for area selection and targeting at the craton to district scale. Lead isotope mapping using analyses of mineralised material has identified gradients in μ (238U/204Pb) that coincide closely with many major deposits. Locations of these deposits also coincide with a gradient in the depth of the lithosphere–asthenosphere boundary determined from calibrated surface wave tomography models converted to temperature. In Australia, gradients in upward-continued gravity anomalies and a step in Moho depth corresponding to a pre-existing major crustal boundary are also observed. The change from thicker to thinner lithosphere is interpreted to localise prospective basins for zinc–lead and copper–cobalt mineralisation, and to control the gradient in lead isotope and other geophysical data. <b>Citation:</b> Huston, D.L., Champion, D.C., Czarnota, K., Hutchens, M., Hoggard, M., Ware, B., Richards, F., Tessalina, S., Gibson, G.M. and Carr, G., 2020. Lithospheric-scale controls on zinc–lead–silver deposits of the North Australian Zinc Belt: evidence from isotopic and geophysical data. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <b>BACKGROUND</b> <p> <p>The United States Geological Survey's (USGS) Landsat satellite program has been capturing images of the Australian continent for more than 30 years. This data is highly useful for land and coastal mapping studies. <p>In particular, the light reflected from the Earth’s surface (surface reflectance) is important for monitoring environmental resources – such as agricultural production and mining activities – over time. <p>We need to make accurate comparisons of imagery acquired at different times, seasons and geographic locations. However, inconsistencies can arise due to variations in atmospheric conditions, sun position, sensor view angle, surface slope and surface aspect. These need to be reduced or removed to ensure the data is consistent and can be compared over time. <p>&nbsp</p> <b>WHAT THIS PRODUCT OFFERS</b> <p> <p>GA Landsat 7 ETM+ Analysis Ready Data Collection 3 takes Landsat 7 Enhanced Thematic Mapper (ETM+) imagery captured over the Australian continent and corrects for inconsistencies across land and coastal fringes. The result is accurate and standardised surface reflectance data, which is instrumental in identifying and quantifying environmental change. <p> <p>The ETM+ instrument is a fixed ‘whisk broom’, eight-band, multispectral scanning radiometer capable of providing high-resolution imaging information of the Earth’s surface. It is an enhanced version of the Thematic Mapper (TM) sensor. <p> <p>This product is a single, cohesive Analysis Ready Data (ARD) package, which allows you to analyse surface reflectance data as is, without the need to apply additional corrections. <p> <p>It contains three sub-products that provide corrections or attribution information: <p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;1) GA Landsat 7 ETM+ NBAR Collection 3 <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2) GA Landsat 7 ETM+ NBART Collection 3 <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;3) GA Landsat 7 ETM+ OA Collection 3 <p> <p>The resolution is a 30 m grid based on the USGS Landsat Collection 1 archive.