From 1 - 10 / 191
  • Disaster management is most effective when it is based on evidence. Evidence-based disaster management means that decision makers are better informed, and the decision making process delivers more rational, credible and objective disaster management outcomes. To achieve this, fundamental data needs to be translated into information and knowledge, before it can be put to use by the decision makers as policy, planning and implementation. Disaster can come in all forms: rapid and destructive like earthquakes and tsunamis, or gradual and destructive like drought and climate change. Tactical and strategic responses need to be based on the appropriate information to minimise impacts on the community and promote subsequent recovery. This implies a comprehensive supply of information, in order to establish the direct and indirect losses, and to establish short and long term social and economic resilience. The development of the National Exposure Information System (NEXIS) is a significant national project being undertaken by Geoscience Australia (GA). NEXIS collects, collates, manages and provides the information required to assess multi-hazard impacts. Exposure information may be defined as a suite of information relevant to all those involved in a natural disaster, including the victims, the emergency services, and the policy and planning instrumentalities.

  • The Garnaut Climate Change Review commissioned by Australia's State and Territory Governments examined the impacts of, and possible policy responses to, climate change on the Australian economy. This presentation discussed the methodology developed for the Review by Geoscience Australia and the outputs which provided an assessment of the impact of tropical cyclone (TC) hazard on communities in northern Australia. The study utilized predicted changes in the maximum potential intensity (MPI) to define changes in the wind hazard and storm surge potential. The MPI sets a thermodynamic, theoretical upper limit for the distribution of TC intensities for a given vertical temperature and humidity profile and a given location. Associated storm surge impacts were developed using a simple relationship between TC intensity and storm surge height and adopting the IPCC fourth assessment global mid-point sea-level rise predictions. We considered the impact on the residential building stock of severe wind and storm surge hazards associated with a number of IPCC climate change scenarios. Changes in residential building stock, for over 500 coastal statistical local areas (SLA's) from Southeast Queensland anticlockwise to Perth, were forecast using Australian Bureau of Statistics population projections through to 2100. A Probable Maximum Loss (PML) curve for each study region was obtained by considering the return-period hazard over the range from 50 to 5000 years. The average annual cost to the region due to tropical cyclones across this wide time period (5000 years), often referred to as the 'annualised loss', was evaluated for each SLA. Expressing the annualised loss as a percentage of total reconstruction demonstrates the intensity of the risk to a particular community, which is not so evident in simple dollar loss figures.

  • Some of the most visible consequences arising from climate change are sea level rise and more intense and frequent storms. On the open coast and low lying estuarine waterways these impacts will lead to the increased risks of inundation, storm surge and coastal erosion that can damage beaches, property and infrastructure and impact on a significant number of people. Understanding the potential risk of these coastal hazards is critical for coastal zone management and the formulation of adaptation responses, while early action is likely to be the most cost effective approach to managing the risk. Geoscience Australia (GA) is assisting the Australian Government's Department of Climate Change to develop a 'first pass' National Coastal Vulnerability Assessment. GA and the University of Tasmania (UTas) are developing fundamental spatial datasets and GIS modelling tools to identify which land areas of the Australian coast are likely to be physically sensitive to the effects of sea level rise, storms and storm surge. Of special interest is to identify sensitive areas where there is significant property and infrastructure that will be the focus of a more detailed study in a second pass assessment. A new national shoreline geomorphic and stability map or Smartline, developed for the project by UTas, is a key new spatial dataset. The Smartline is an interactive, nationally-consistent coastal GIS map in the form of a segmented line. Each line segment identifies distinct coastal landform types using multiple attribute fields to describe important aspects of the geology, geomorphology and topography of the coast. These data enable an assessment of the stability of the coast and its sensitivity to the potential impacts of shoreline erosion (soft coast) and inundation (low-lying coast), providing a useful indicative coastal risk assessment.

  • This document describes opportunities for supporting the Philippines CSCAND agencies to enhance their capacity to assess the risk and impact from natural hazards based on an assessment of current gaps. The CSCAND agencies include the Mines & Geosciences Bureau, the Philippine Institute of Volcanology and Seismology, Philippine Atmospheric, the Geophysical and Astronomical Services Administration, the National Mapping and Resource Information Agency, and the Office of Civil Defence. It is important to note that efforts to assess natural hazard risk are only one mechanism by which the CSCAND agencies support the reduction of disaster risk in the Philippines and that this paper covers only a part of the disaster risk reduction activity spectrum.

  • Global climate change is putting Australia's infrastructure and in particular coastal infrastructure at risk. More than 80% of Australians live within the coastal zone. Almost 800,000 residences are within 3km of the coast and less than 6m above sea level. Much of Australia's land transport is built around road and rail infrastructure which is within the threatened coastal zone. A significant number of Australia's ports, harbours and airports are under threat. Australia's coastal zone contains several major cities, and supports agriculture, fisheries, tourism, coastal wetlands and estuaries, mangroves and other coastal vegetation, coral reefs, heritage areas and threatened species or habitats. Sea level rise is one physical effect of rising sea temperatures and is estimated at about 0.146m for 2030 (IPCC 2007) and up to 1.1m for 2100 (Antarctic and Climate Ecosystems CRC). The warming is likely to result in increases in intensity of both extra-tropical and tropical storms (spatially dependent) which are predicted to increase storm surge and severe wind hazard. Beaches, estuaries, coastal wetlands, and reefs which have adapted naturally to past changes in climate (storminess) and sea level over long time scales, now are likely to face faster rates of change. In many cases landward migration may be blocked by human land uses and infrastructure. Adaptation options include integrated coastal zone assessments and management; redesign, rebuilding, or relocation of capital assets; protection of beaches, dunes and maritime infrastructure; development zone control; and retreat plans.

  • A comprehensive earthquake impact assessment requires an exposure database with attributes that describe the distribution and vulnerability of buildings in the region of interest. The compilation of such a detailed database will require years to develop for a moderate-sized city, let alone on a national scale. To hasten this database development in the Philippines, a strategy has been employed to involve as many stakeholders/organizations as possible and equip them with a standardized tool for data collection and management. The best organizations to tap are the local government units (LGUs) since they have better knowledge of their respective area of responsibilities and have a greater interest in the use of the database. Such a tool is being developed by PHIVOLCS-DOST and Geoscience Australia. Since there are about 1,495 towns and cities in the country with varying financial capacities, this tool should involve the use of affordable hardware and software. It should work on ordinary hardware, such as an ordinary light laptop or a netbook that can easily be acquired by these LGUs. The hardware can be connected to a GPS and a digital camera to simultaneously capture images of structures and their location. The system uses an open source database system for encoding the building attributes and parameters. A user-friendly GUI with a simplified drop-down menu, containing building classification schema, developed in consultation with local engineers, is utilised in this system. The resulting national database is integrated by PHIVOLCS-DOST and forms part of the Rapid Earthquake Damage Assessment System (REDAS), a hazard simulation tool that is also made available freely to partner local government units.

  • We highlight the importance of developing and integrating fundamental information at a range of scales (regional to national to local) to develop consistency, gain ownership, and meet the needs of a range of users and decision makers. We demonstrate this with a couple of case studies where we have leveraged national databases and computational tools to work locally to gain ownership of risks and to develop adaptation options. In this sense we endorse the notion of combining top down and bottom up approaches to get the best outcome.

  • Cliff Head is the only producing oil field in the offshore Perth Basin. The lack of other exploration success has lead to a perception that the primary source rock onshore (Triassic Kockatea Shale) is absent or has limited generative potential. However, recent offshore well studies show the unit is present and oil prone. Multiple palaeo-oil columns were identified within Permian reservoir below the Kockatea Shale regional seal. This prompted a trap integrity study into fault reactivation as a critical risk for hydrocarbon preservation. Breach of accumulations could be attributed to mid Jurassic extension, Valanginian breakup, margin tilt or Miocene structuring. The study focused on four prospects, covered by 3D seismic data, containing breached and preserved oil columns. 3D geomechanical modelling simulated the response of trap-bounding faults and fluid flow to mid Jurassic-Early Cretaceous NW-SE extension. Calibration of modelling results against fluid inclusion data, as well as current and palaeo-oil columns, demonstrates that along-fault fluid flow correlates with areas of high shear and volumetric strains. Localisation of deformation leads to both an increase in structural permeability promoting fluid flow, and the development of hard-linkages between reactivated Permian reservoir faults and Jurassic faults producing top seal bypass. The main structural factors controlling the distribution of permeable fault segments are: (i) failure for fault strikes 350??110?N; (ii) fault plane intersections generating high shear deformation and dilation; and (iii) preferential reactivation of larger faults shielding neighbouring structures. These results point to a regional predictive approach for assessing trap integrity in the offshore Perth Basin.

  • The islands in the west Pacific are highly vulnerable to tropical cyclones. These severe storms can devastate communities by destroying homes, crops and infrastructure, and result in loss of life. As part of the Pacific Climate Change Science Program, Geoscience Australia assessed the wind hazard from tropical cyclones for fourteen islands in the west Pacific as well as East Timor. The wind hazard was estimated for the current climate and projections were made for 2090 under the SRES A2 emissions scenario. This was achieved using a combination of historical tracks, tracks of tropical cyclone-like vortices detected in downscaled climate models and the Tropical Cyclone Risk Model (TCRM), developed by Geoscience Australia. The current climate wind hazard was found to exceed the wind loading design standards (HB 212-2002, 2002) by 15%-30%. The climate projections indicate a general decrease in wind hazard for the fifteen countries by 2090, associated with a poleward shift in storm genesis and peak intensity.

  • Tropical cyclones present a significant hazard to countries situated in the warm tropical waters of the western Pacific. These severe storms are the most costly and the most common natural disaster to affect this region (World Bank, 2006). The hazards posed by these severe storms include the extreme winds, storm surge inundation, salt water intrusion into ground water supplies, and flooding and landslides caused by the intense rainfall. Despite the high vulnerability of the islands in this region, there have been relatively few previous studies attempting to quantify the hazard from tropical cyclones in this region (i.e. Shorten et al. 2003, Shorten et al. 2005, Terry 2007). Understanding this hazard is also vital for informing climate change adaptation options. This study aims to address the limited understanding of the extreme wind hazard in this region. The wind hazard from tropical cyclones is evaluated for the current climate and projections were made to assess how this hazard may change in the future. The analysis is performed using a combination of historical tracks and downscaled climate models with Geoscience Australia's Tropical Cyclone Risk Model. The work was funded as part of the Pacific Climate Change Science Program (PCCSP), which forms the science component of the International Climate Change Adaptation Initiative (ICCAI), an Australian government initiative designed to meet high priority climate change adaptation needs of vulnerable countries in our region. This study assesses the wind hazard for the fifteen PCCSP partner countries which include 14 islands located in the West Pacific as well as East Timor.